Regularity for solutions to quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations (SPDEs) driven by nonlinear multipli
由非线性乘法驱动的拟线性简并抛物双曲随机偏微分方程 (SPDE) 解的正则性
基本信息
- 批准号:1939627
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We aim to establish new regularity estimates in time and space for solutions to quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations (SPDEs). Our study will be focused on the solutions of equations having a general multiplicative noise and a nonlinear diffusion coefficient. Classical examples of these equations are stochastic scalar conservation laws that arise in a wide range of applications including the description of phenomena as the convection-diffusion of an ideal fluid in porous media. The presence of a stochastic noise in addition to the deterministic part of these equations (namely to the PDEs) is often used to describe numerical, empirical or physical uncertainties. In literature, the well-posedness for initial value problems involving such type of equations is often proved by transforming the original (nonlinear) equation into a new linear equation. The latter is known as the kinetic formulation of the original equation and it has the advantage that it is easier to handle from a mathematical point of view.The regularity of solutions of these quasilinear degenerate parabolic-hyperbolic SPDEs will be studied by exploiting the kinetic approach described above along with Fourier analytic techniques and averaging Lemmata. A first step will consist in developing optimal regularity estimates for solutions of porous medium equations driven by a nonlinear multiplicative space-time white noise. A possible way of proving such new results could consist in generalising regularity estimates for a degenerate parabolic Anderson model driven by a spatial white noise.Once finished the first step, the next step would consist in deriving optimal regularity estimates for general quasilinear degenerate parabolic-hyperbolic SPDEs. A possible further direction of the research may be the study of how the regularity of solutions for these kind of equations changes when the space-time white noise is replaced by a noise regular in space and driven by a rough path in time.All equations considered arise in several applications across other research fields. The equation that describes the fluctuating hydrodynamics of the zero range process about its hydrodynamic limit or the equation describing the evolution of a thin film consisting of an incompressible Newtonian liquid on a flat d-dimensional substrate have all the same form of the SPDEs studied in our project. The study of the analytical properties for these solutions (like the regularity estimates) would be beneficial for a better understanding of these phenomena. The project is funded through the EPSRC CDT in Statistical Applied Mathematics at Bath (SAMBa). As mentioned above, this research has potential to be applied across different mathematical disciplines, which is one of the objectives of SAMBa.
本文旨在建立拟线性退化抛物-双曲型随机偏微分方程(SPDEs)解在时间和空间上的新的正则性估计。我们的研究将集中在具有一般乘法噪声和非线性扩散系数的方程的解上。这些方程的经典例子是随机标量守恒定律,它在广泛的应用中出现,包括描述理想流体在多孔介质中的对流扩散等现象。除了这些方程的确定性部分(即偏微分方程)之外,随机噪声的存在通常用于描述数值、经验或物理的不确定性。在文献中,涉及这类方程的初值问题的适定性通常是通过将原(非线性)方程转化为新的线性方程来证明的。后者被称为原始方程的动力学公式,它的优点是从数学的角度更容易处理。这些拟线性退化抛物双曲SPDEs解的正则性将利用上述动力学方法以及傅里叶分析技术和平均引理来研究。第一步将包括开发由非线性乘性时空白噪声驱动的多孔介质方程解的最优正则性估计。证明这些新结果的一种可能方法是推广由空间白噪声驱动的退化抛物型安德森模型的正则性估计。一旦完成了第一步,下一步将是推导一般拟线性退化抛物-双曲SPDEs的最优正则性估计。当时空白噪声被空间上的规则噪声所取代,并由时间上的粗糙路径驱动时,这类方程解的正则性如何变化,可能是进一步研究的方向。所考虑的所有方程都在其他研究领域的几个应用中出现。描述零范围过程中关于其流体动力极限的波动流体动力学方程或描述由不可压缩牛顿液体组成的薄膜在平面d维衬底上的演化方程都具有我们项目中研究的spde的相同形式。研究这些解的解析性质(如正则性估计)将有助于更好地理解这些现象。该项目由巴斯EPSRC统计应用数学CDT (SAMBa)资助。如上所述,这项研究有可能应用于不同的数学学科,这是SAMBa的目标之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
无穷维哈密顿系统的KAM理论
- 批准号:10771098
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Regularity and Stability for Solutions of Quasilinear Wave Equations with Singularities
具有奇异性的拟线性波动方程解的正则性和稳定性
- 批准号:
2206218 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Asymptotics of solutions for dispersive quasilinear problems
色散拟线性问题解的渐近性
- 批准号:
1700282 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Regularity of Weak Solutions to Degenerate Nonlinear/Quasilinear Equations with Rough Coefficients
具有粗糙系数的退化非线性/拟线性方程弱解的正则性
- 批准号:
418975-2012 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Regularity of Weak Solutions to Degenerate Nonlinear/Quasilinear Equations with Rough Coefficients
具有粗糙系数的退化非线性/拟线性方程弱解的正则性
- 批准号:
418975-2012 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Regularity of Weak Solutions to Degenerate Nonlinear/Quasilinear Equations with Rough Coefficients
具有粗糙系数的退化非线性/拟线性方程弱解的正则性
- 批准号:
418975-2012 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Regularity of solutions to infinitely degenerate quasilinear equations. Properties of associated metric spaces. Stochastic processes associated to nonlinear elliptic equations.
无限简并拟线性方程解的正则性。
- 批准号:
454854-2014 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Global and blowup solutions for quasilinear parabolic equations
拟线性抛物型方程的全局解和爆炸解
- 批准号:
480500-2015 - 财政年份:2015
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Regularity of Weak Solutions to Degenerate Nonlinear/Quasilinear Equations with Rough Coefficients
具有粗糙系数的退化非线性/拟线性方程弱解的正则性
- 批准号:
418975-2012 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Regularity of solutions to infinitely degenerate quasilinear equations. Properties of associated metric spaces. Stochastic processes associated to nonlinear elliptic equations.
无限简并拟线性方程解的正则性。
- 批准号:
454854-2014 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Global solutions of semilinear and quasilinear dispersive equations
半线性和拟线性色散方程的全局解
- 批准号:
1265818 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant