Regularity and Stability for Solutions of Quasilinear Wave Equations with Singularities

具有奇异性的拟线性波动方程解的正则性和稳定性

基本信息

  • 批准号:
    2206218
  • 负责人:
  • 金额:
    $ 24.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The formation of cusp and shock waves in optical systems, liquid crystals, and water waves are examples of nonlinear phenomena arising in nature and engineering that can be described by nonlinear partial differential equations. This project considers nonlinear partial differential equations for wave models whose solutions might form different types of singularities in finite time, such as cusp singularities in the shallow water wave equation or shock waves in models of nonlinear optics, with the overall aim of understanding under which condition the solutions are valid for all times. The research will give guidance in engineering, for example for designing and controlling devices in optical systems. The project will also provide opportunities for research training of graduate students. A main goal of the project is to describe how the power of nonlinear wave speed impacts the regularity of solutions. The investigator will study a class of equations, which include the short pulse equation from nonlinear optics and Camassa-Holm type equations from water waves, whose solutions might form finite-time singularities. They will also establish an optimal transport metric when studying the stability of a system of wave equations modelling nematic liquid crystals. Finally, they will explore a higher dimensional quasilinear model with radial symmetry, the so-called O(3) sigma-model, with background in general relativity, Yang-Mills field and nematic liquid crystals.This project is jointly funded by the DMS Applied Mathematics Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光学系统、液晶和水波中尖峰和冲击波的形成是自然界和工程中出现的可用非线性偏微分方程组描述的非线性现象的例子。这个项目考虑了波动模型的非线性偏微分方程组,其解可能在有限时间内形成不同类型的奇点,例如浅水波方程中的尖点奇点或非线性光学模型中的激波,总的目的是了解在什么条件下解总是有效的。该研究将在工程上提供指导,如光学系统中器件的设计和控制。该项目还将为研究生的研究培训提供机会。该项目的一个主要目标是描述非线性波速的力量如何影响解的正则性。研究人员将研究一类方程,包括来自非线性光学的短脉冲方程和来自水波的Camassa-Holm型方程,它们的解可能形成有限时间奇点。他们还将在研究模拟向列相液晶的波动方程系统的稳定性时,建立一个最优的传输度量。最后,他们将探索一种具有径向对称性的高维准线性模型,即所谓的O(3)西格玛模型,该模型具有广义相对论、杨-米尔斯场和向列相液晶的背景。该项目由DMS应用数学计划和既定的刺激竞争研究计划(EPSCoR)联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Finsler type Lipschitz optimal transport metric for a quasilinear wave equation
  • DOI:
    10.1016/j.jde.2023.01.035
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    H. Cai;Geng Chen;Y. Shen
  • 通讯作者:
    H. Cai;Geng Chen;Y. Shen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yannan Shen其他文献

"Bailout" coronary stenting in patients with a recent myocardial infarction.
近期心肌梗塞患者的“救助”冠状动脉支架置入术。
  • DOI:
    10.1016/s0002-9149(97)89326-5
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clifford N. Thomas;William S. Weintraub;Yannan Shen;Z. Ghazzal;J. S. Douglas;S. King;Neal A. Scott
  • 通讯作者:
    Neal A. Scott
MicroRNA‑26b suppresses autophagy in breast cancer cells by targeting DRAM1 mRNA, and is downregulated by irradiation
  • DOI:
    DOI: 10.3892/ol.2017.7452
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
  • 作者:
    Cuida Meng;Yang Liu;Yannan Shen;Shuchun Liu;Zhicheng Wang;Qingsheng Ye;Hongyang Liu;Xiaodong Liu;Lili Jia
  • 通讯作者:
    Lili Jia
The regularity of solution for a generalized Hunter–Saxton type equation
一个广义 Hunter–Saxton 型方程解的正则性
  • DOI:
    10.1016/j.aml.2025.109561
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Hong Cai;Geng Chen;Yannan Shen
  • 通讯作者:
    Yannan Shen
Clinical Experience with Perindopril in Elderly Hypertensive Patients
  • DOI:
    10.2165/00129784-200404050-00006
  • 发表时间:
    2012-08-17
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Joel M. Neutel;Michael A. Weber;Stevo Julius;Jay N. Cohn;Prasad Turlapaty;Yannan Shen;Weinong Guo;Alicia Batchelor;Hjalmar Lagast
  • 通讯作者:
    Hjalmar Lagast
Caveolin-1 Mediates Low-Intensity Ultrasound-Induced Apoptosis via Downregulation of Signal Transducer and Activator of Transcription 3 Phosphorylation in Laryngeal Carcinoma Cells
Caveolin-1 通过下调喉癌细胞中信号转导器和转录激活剂 3 磷酸化介导低强度超声诱导的细胞凋亡
  • DOI:
    10.1016/j.ultrasmedbio.2016.04.017
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Qingsheng Ye;Cuida Meng;Yannan Shen;Jianjun Ji;Xiaochun Wang;Sheng Zhou;Lili Jia;Yanqun Wang
  • 通讯作者:
    Yanqun Wang

Yannan Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

随机激励下多稳态系统的临界过渡识别及Basin Stability分析
  • 批准号:
    11872305
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
  • 批准号:
    2306258
  • 财政年份:
    2023
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Simulations and theory of crystal nucleation and growth, ordering processes in solutions, and nanobubble stability and mobility
晶体成核和生长、溶液中的有序过程以及纳米气泡稳定性和迁移率的模拟和理论
  • 批准号:
    RGPIN-2022-03549
  • 财政年份:
    2022
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Discovery Grants Program - Individual
Stability of entropy solutions to the Cauchy problem for conservation laws
守恒定律柯西问题熵解的稳定性
  • 批准号:
    22K03349
  • 财政年份:
    2022
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability and phase transitions of protein solutions.
蛋白质溶液的稳定性和相变。
  • 批准号:
    2610906
  • 财政年份:
    2021
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Studentship
Construction and stability analysis of new black hole solutions predicted by topological censorship theorems
拓扑审查定理预测的新黑洞解的构造及稳定性分析
  • 批准号:
    21K03560
  • 财政年份:
    2021
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability of solutions for two-phase flow equations
两相流方程解的稳定性
  • 批准号:
    21K13817
  • 财政年份:
    2021
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research on the global structure of solutions and their stability for nonlocal boundary value problems by using elliptic functions
利用椭圆函数研究非局部边值问题解的全局结构及其稳定性
  • 批准号:
    19K03593
  • 财政年份:
    2019
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neural Network and Ordinary Differential Equation - Stability and Numerical Solutions
神经网络和常微分方程 - 稳定性和数值解
  • 批准号:
    541440-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 24.38万
  • 项目类别:
    University Undergraduate Student Research Awards
Stability and Bifurcations of Periodic Solutions to Lattice Dynamical Systems
格子动力系统周期解的稳定性和分岔
  • 批准号:
    502285-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Postdoctoral Fellowships
Stability analysis for planar traveling solutions for nonlinear dispersive equations
非线性色散方程平面行进解的稳定性分析
  • 批准号:
    17K05332
  • 财政年份:
    2017
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了