Electrons and nuclei in tiny wires
细导线中的电子和原子核
基本信息
- 批准号:1941358
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We can see and feel - and even hear and smell - what current flow can do in lightbulbs. They heat up, emit light, and eventually burn out. So how about the thinnest wires possible in nature, such as chains of single atoms and molecular junctions, which can be produced experimentally with high degrees of control? The difference is not just size. The current densities (current per unit cross-sectional area) in atomic wires can exceed those in a lightbulb filament by many orders of magnitude. How the electrons and the nuclei behave under these conditions is an open question, to both experiment and theory.For many years our group has worked on the question of how current flow in these systems affects the dynamics of the atomic nuclei. A lot has been achieved and learned about these conducting systems, and a range of methodologies exists, proposed by research groups worldwide, depending on the questions to address. Effects familiar from everyday experience occur at the atomic scale too. For example, Joule heating can take place in atomic wires and can result in a large local temperature rise. Another exciting development was our demonstration that current can exert an additional, non-conservative force field on atoms, with the possibility of using current as the driver for atomic-scale engines, by analogy with how a stream can drive a waterwheel. At the same time, the energy transfer under the non-conservative forces poses a potentially very powerful failure mechanism for nanoscale conductors.The interaction of the atomic motion with the electronic subsystem can lead further to velocity-dependent forces on nuclei. One of them, sometimes termed electronic friction, is an effective damping force, resulting from the loss of energy from the atomic motion due to the excitation of electrons. (The converse effect - spontaneous phonon emission by the current-carrying electrons - is at the root of Joule heating and is one of the most difficult effects to capture theoretically.) Another velocity-dependent force, proposed by our collaborators in Denmark, originates strictly from the current. The dynamics of the atoms under current is the result of the interplay between all these effects. Understanding them in turn is essential in gauging the stability, functionality and applicability of these systems as nanoscale devices, against effects such as local heating, electromigration, or the enormous energy transfer from current to the atomic dynamics that can take place under the recently proposed non-conservative current-induced forces above.A considerable part of these questions can be understood by treating the atomic motion classically. In collaboration with colleagues from Denmark and China, however, we have been able to arrive at an effective driven quantum Liouville equation for the atomic motion under current, that subsumes all of the aforementioned effects.The aim of this project is to study the properties of this equation and bring out the physics it describes. To this end, we will begin with the more familiar classical description of the nuclei, and gain further experience with the effects that current-induced forces can have on atomic wires. We will then move on to the quantum Liouville equation and solve it numerically for simple model systems, together with a pen-and-paper analysis of the effects that it generates.Strategically, the project has aspects from Condensed Matter Physics and the electronic properties of low-dimensional systems, and Quantum Devices, Components and Systems and the understanding of novel energy conversion mechanisms in quantum conductors.This work is envisaged as a collaboration with our colleagues at the Niels Bohr Institute and the Technical University of Denmark in Copenhagen. We will benefit further from our long-standing links with leading experimentalists in atomic-scale conductors at the University of Leiden.
我们可以看到和感觉到--甚至听到和闻到--电流在灯泡中的作用。它们会升温,发光,最终燃烧殆尽。那么,自然界中可能存在的最细的电线,比如单原子链和分子结,它们可以通过实验高度控制地产生呢?区别不仅仅是大小。原子线中的电流密度(每单位横截面积的电流)可以超过灯泡灯丝中的电流密度许多数量级。在这些条件下,电子和原子核的行为如何,对实验和理论来说都是一个悬而未决的问题。多年来,我们小组一直致力于研究这些系统中的电流如何影响原子核的动力学。关于这些传导系统已经取得了很多成就,并且存在一系列方法,由世界各地的研究小组根据要解决的问题提出。日常经验中熟悉的效应也发生在原子尺度上。例如,焦耳加热可以发生在原子线中,并且可以导致大的局部温度上升。另一个令人兴奋的发展是我们证明了电流可以对原子施加额外的非保守力场,并有可能使用电流作为原子级发动机的驱动器,这与水流如何驱动水轮相似。同时,非保守力作用下的能量转移为纳米导体提供了一种潜在的非常强大的失效机制,原子运动与电子子系统的相互作用可以进一步导致原子核上的速度依赖力。其中之一,有时称为电子摩擦,是一种有效的阻尼力,由于电子的激发而导致原子运动的能量损失。(The匡威效应--载流电子的自发声子发射--是焦耳加热的根源,也是理论上最难捕捉的效应之一。)另一种与速度有关的力是由我们在丹麦的合作者提出的,它严格地起源于电流。电流作用下原子的动力学是所有这些效应相互作用的结果。反过来,理解它们对于衡量这些系统作为纳米器件的稳定性、功能性和适用性至关重要,这些系统可以抵抗局部加热、电迁移或在最近提出的非保守电流诱导力下从电流到原子动力学的巨大能量转移等效应。这些问题中的相当一部分可以通过经典地处理原子运动来理解。然而,在与来自丹麦和中国的同事的合作下,我们已经能够得到一个有效的驱动量子刘维尔方程,该方程包含了所有上述效应。本项目的目的是研究该方程的性质,并提出它所描述的物理。为此,我们将开始对原子核进行更熟悉的经典描述,并获得电流感应力对原子线影响的进一步经验。然后,我们将继续讨论量子刘维尔方程,并对简单模型系统进行数值求解,同时对它产生的影响进行纸笔分析。从战略上讲,该项目涉及凝聚态物理学和低维系统的电子特性,以及量子器件,组件和系统以及量子导体中新的能量转换机制的理解。这项工作被设想为与我们在尼尔斯玻尔的同事合作研究所和哥本哈根的丹麦技术大学。我们将进一步受益于我们与莱顿大学原子尺度导体的领先实验学家的长期联系。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Curl maps in nanowires
- DOI:10.1103/physrevb.102.115403
- 发表时间:2020-09
- 期刊:
- 影响因子:3.7
- 作者:C. Mccooey;T. Todorov;D. Dundas
- 通讯作者:C. Mccooey;T. Todorov;D. Dundas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Single-Nuclei Sequencing Whole Aquatic Plants to Reveal Novel Nutrient Transport Mechanisms
对整个水生植物进行单核测序,揭示新的养分运输机制
- 批准号:
BB/Z514809/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Collaborative Research: RUI: Study of Nutron-Rich Nuclei and Neutron Detector Response
合作研究:RUI:富营养核和中子探测器响应的研究
- 批准号:
2311125 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
The Time Variability and Duty Cycle of Active Galactic Nuclei During Quenching
淬火过程中活动星系核的时间变化和占空比
- 批准号:
2307375 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Gamma-ray spectroscopy of neutron-rich zirconium nuclei
富中子锆核的伽马射线能谱
- 批准号:
2877631 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Magnetic properties of unstable nuclei: calculations of magnetic moments and distribution of nuclear magnetisation
不稳定原子核的磁特性:磁矩和核磁化强度分布的计算
- 批准号:
2782677 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Deconstructing the sertonin system in the mouse brain
解构小鼠大脑中的血清素系统
- 批准号:
10656870 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Androgen Regulation of CRF Receptor 1 as a mediator of stress responses
雄激素对 CRF 受体 1 的调节作为应激反应的调节剂
- 批准号:
10724308 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
- 批准号:
10585031 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The effect of aging on neurotransmitters and motor performance in a primate model
衰老对灵长类动物模型中神经递质和运动表现的影响
- 批准号:
10573386 - 财政年份:2023
- 资助金额:
-- - 项目类别: