Mixed-integer Linear Programming Models in Supply-Chain and Reliability Management
供应链和可靠性管理中的混合整数线性规划模型
基本信息
- 批准号:1949403
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focusses on bilevel optimisation. Bilevel optimisation problems consist of two problems, defined as the leaders and the follower's problems and we can think of these two problems being solved sequentially. The leader shall go first, defining their variables such that they will maximise their objective. The follower, will then optimise their problem, with the leader's variables acting as parameters. One can think of this as the follower reacting to the leader. The follower's variables are contained within the leaders problem and will affect their objective. Hence, when the leader is optimising, they must ensure that the followers variables in their problem, will match the reaction of the follower, otherwise their solution is not a feasible one. Due to this reaction structure, bilevel optimisation has applications within, among others, the energy and transportation sectors. One of the state of the art techniques used to solve bilevel problems is to exchange the follower's problem for constraints which are necessary for optimality. One such method is known as the Value Function Approach, ensuring that the follower's variables in the leader's problem are indeed optimal for the follower.However, the value function is a complex function, difficult to evaluate, which cannot always be explicitly included in the leader's problem. The aim of this project is to utilise the Value Function Approach for a specific bilevel problem in which the leader's variables affect the follower's objective, but not their variables.The goal of this research is to conceive an efficient algorithm based on the Value Function Approach for this problem type, which shall be quicker than generic bilevel solvers applied to such problems.
这个项目的重点是双层优化。双层优化问题由两个问题组成,定义为领导者和追随者的问题,我们可以认为这两个问题是顺序解决的。领导者应该先开始,定义他们的变量,这样他们就能最大限度地实现他们的目标。跟随者将优化他们的问题,领导者的变量作为参数。人们可以把这看作是追随者对领导者的反应。追随者的变量包含在领导者的问题中,并将影响他们的目标。因此,当领导者进行优化时,他们必须确保他们问题中的追随者变量与追随者的反应相匹配,否则他们的解决方案不是可行的。由于这种反应结构,双层优化在能源和运输部门等领域有应用。用于解决双层问题的最新技术之一是将跟随者的问题交换为最优性所必需的约束。其中一种方法被称为价值函数法(Value Function Approach),它确保领导者问题中的追随者变量确实是追随者的最优变量。然而,价值函数是一个复杂的函数,很难评估,不能总是显式地包含在领导者问题中。本研究的目的是利用价值函数法求解一类特殊的两层问题,其中领导者的变量影响跟随者的目标,但不影响他们的变量,本研究的目的是构思一种基于价值函数法的高效算法,这种算法比一般的两层求解器应用于此类问题要快。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Next Generation of Algorithms for Mixed Integer Linear Programming (MILP)
下一代混合整数线性规划 (MILP) 算法
- 批准号:
EP/V00252X/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Advanced algorithms and heuristics for solving quantified mixed - integer linear programs
用于求解量化混合整数线性程序的高级算法和启发式方法
- 批准号:
399489083 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
III: Small: Exploiting and Extending Integer Linear Programming in Computational Biology
III:小:在计算生物学中利用和扩展整数线性规划
- 批准号:
1528234 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Integer Linear Programming Models for Subspace Codes and Finite Geomery
子空间代码和有限几何的整数线性规划模型
- 批准号:
266952998 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
AF:Small: Linear Differential Equations with a Convergent Integer Series Solution
AF:Small:具有收敛整数级数解的线性微分方程
- 批准号:
1319547 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Large Scale Optimization Methods for Non-linear Integer Programming and Applications
非线性整数规划的大规模优化方法及应用
- 批准号:
404135-2011 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Large Scale Optimization Methods for Non-linear Integer Programming and Applications
非线性整数规划的大规模优化方法及应用
- 批准号:
404135-2011 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
AF: Small: RUI: Ranking and Clustering by Integer and Linear Optimization
AF:小:RUI:通过整数和线性优化进行排名和聚类
- 批准号:
1116963 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Global Inference for Summarization Using Integer Linear Programming
使用整数线性规划进行全局归纳推理
- 批准号:
EP/F055765/1 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grant