AF: Small: RUI: Ranking and Clustering by Integer and Linear Optimization

AF:小:RUI:通过整数和线性优化进行排名和聚类

基本信息

  • 批准号:
    1116963
  • 负责人:
  • 金额:
    $ 39.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

The research component of this proposal is about ranking and clustering. A given collection of items is to be ordered according to some criterion (e.g., from most to least important). In clustering, the goal is to group items so that similar items appear together. Though well-studied, ranking and clustering research has been dominated by heuristic methods that produce approximate results quickly. Optimization methods that produce exact optimal results have been far less studied, possibly because these methods require longer computational times, and the gains in accuracy do not outweigh the computational costs in many applications. This is unfortunate since optimization methods are based on a beautiful theoretical framework and can lead to novel and interesting results. For example, preliminary work by the PI on a ranking optimization method, indicates that multiple optimal solutions can be linked to ties in the ranked list. On the other hand, heuristic methods are not designed to handle ties in the output ranking. Two main goals of the proposed research are: (1) to reveal interesting theoretical connections, and (2) to increase the size limits of optimally solvable problems using both classical and clever new relaxation techniques.Ranking, also known as linear ordering (LOR), is close in spirit to the Traveling Salesman Problem (TSP): both are simple to state, yet hard to solve optimally. Over several decades, huge gains have been made on the size of solvable TSPs, that have resulted in new and unforeseen uses. Notable examples occur in the transportation industry (involving thousand-city TSPs) and in the microprocessor industry (with even larger TSPs routing copper wiring on circuit-boards). Similar progress is expected for the LOR, whose current limit is a few hundred to a few thousand items in some cases. Yet applications for much larger LORs abound, e.g. rankings of genes, products, and webpages. Furthermore, breakthroughs for the TSP (and likewise the proposed LOR work) have not solely been related to scale, but theoretical advances and progress in understanding connections to other problems and fields have been equally crucial in the development of general purpose methods for integer programming, such as cutting plane and branch and cut techniques. The proposed research has great impact. Ranking and clustering have become standard data analysis tools with many uses. For example, Google uses ranking to order webpages resulting from user queries, and also uses clustering for its "Find Similar Pages" function. Amazon uses clustering in its "Customers Who Bought X Also Bought Y" feature. Facebook and Twitter can generate ads and friend recommendations based on ranking and clustering algorithms. To ensure the results of the proposed research reach these consumers, the work will be widely disseminated through journal publications and two books. The project's novel student training plan, which includes peer mentoring and an international exchange program, will broaden participation of underrepresented groups. The educational component and its Calculus Activity Book, being aimed at changing students attitudes towards the sciences and at instilling confidence in scientific ability, will have the stronger impact on those students who more commonly fail to be retained (likely a relatively large number coming from underrepresented groups), and thus will help further diversify and broaden participation in STEM disciplines.
本提案的研究部分是关于排序和聚类。给定的一组物品将根据某些标准进行排序(例如,从最重要到最不重要)。在集群中,目标是对项目进行分组,以便相似的项目出现在一起。虽然研究得很充分,排序和聚类研究一直由启发式方法主导,这种方法可以快速产生近似结果。产生精确的最优结果的优化方法的研究很少,可能是因为这些方法需要更长的计算时间,并且在许多应用中,精度的增益并不超过计算成本。这是不幸的,因为优化方法是基于一个漂亮的理论框架,可以导致新颖和有趣的结果。例如,PI对排序优化方法的初步研究表明,多个最优解可以链接到排名表中的关系。另一方面,启发式方法不是为处理输出排序中的关系而设计的。提出的研究的两个主要目标是:(1)揭示有趣的理论联系,(2)使用经典和聪明的新松弛技术来增加最优可解问题的大小限制。排序,也被称为线性排序(LOR),在精神上与旅行推销员问题(TSP)很接近:两者都很容易表述,但很难得到最优解。几十年来,在可解决的tsp的规模上取得了巨大的进步,这导致了新的和不可预见的用途。值得注意的例子发生在交通运输业(涉及千个城市的tsp)和微处理器行业(甚至更大的tsp在电路板上布线铜线)。在某些情况下,目前的限制是几百到几千个项目,预计LOR也会取得类似的进展。然而,更大的lor应用程序比比皆是,例如基因、产品和网页的排名。此外,TSP的突破(以及同样提出的LOR工作)不仅与规模有关,而且在理解与其他问题和领域的联系方面的理论进步和进展对于整数规划的通用方法的发展同样至关重要,例如切割平面和分支和切割技术。所提出的研究具有很大的影响。排序和聚类已经成为具有多种用途的标准数据分析工具。例如,b谷歌使用排名来对用户查询的网页进行排序,并且还使用聚类来实现“查找相似页面”功能。亚马逊在其“购买X的客户也购买Y”功能中使用了集群。Facebook和Twitter可以根据排名和聚类算法生成广告和好友推荐。为了确保拟议的研究结果能够传达给这些消费者,这项工作将通过期刊出版物和两本书广泛传播。该项目新颖的学生培训计划,包括同伴指导和国际交流计划,将扩大代表性不足群体的参与。教育部分及其《微积分活动手册》旨在改变学生对科学的态度,并灌输对科学能力的信心,这将对那些通常无法被保留的学生(可能有相当多的学生来自代表性不足的群体)产生更大的影响,从而有助于进一步多样化和扩大STEM学科的参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Langville其他文献

Amy Langville的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Langville', 18)}}的其他基金

DMS-CM: Workshop of the Southeastern Clustering and Ranking Group; August 2009, Charleston, SC
DMS-CM:东南聚类与排名小组研讨会;
  • 批准号:
    0917889
  • 财政年份:
    2009
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
CAREER: Updating Problems in Information Retrieval and a Mathematical Dissection Lab
职业:更新信息检索和数学剖析实验室中的问题
  • 批准号:
    0546622
  • 财政年份:
    2006
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
  • 批准号:
    2327619
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: RUI: Data Science from Economic Foundations
合作研究:AF:小型:RUI:来自经济基础的数据科学
  • 批准号:
    2218814
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: RUI: Data Science from Economic Foundations
合作研究:AF:小型:RUI:来自经济基础的数据科学
  • 批准号:
    2218813
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
AF: Small: RUI: Towards Resolving the Dynamic Optimality Conjecture.
AF:小:RUI:解决动态最优猜想。
  • 批准号:
    1910873
  • 财政年份:
    2019
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
AF: Small: RUI: Competitive Search, Evacuation and Reconfiguration with Coordinated Mobile Agents
AF:小型:RUI:通过协调移动代理进行竞争性搜索、疏散和重新配置
  • 批准号:
    1813940
  • 财政年份:
    2018
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
AF: Small: RUI: Unifying Self-Assembly Through Tile Automata
AF:小:RUI:通过平铺自动机统一自组装
  • 批准号:
    1817602
  • 财政年份:
    2018
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
AF: Small: RUI: New Directions in Kolmogorov Complexity and Network Information Theory
AF:小:RUI:柯尔莫哥洛夫复杂性和网络信息理论的新方向
  • 批准号:
    1811729
  • 财政年份:
    2018
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
AF: Small: RUI: The model-based approach and a new kind of Cylindrical Algebraic Decomposition
AF:小:RUI:基于模型的方法和一种新型圆柱代数分解
  • 批准号:
    1525896
  • 财政年份:
    2015
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Interagency Agreement
AF: Small: RUI: Faster Arithmetic for Sparse Polynomials and Integers
AF:小:RUI:稀疏多项式和整数的更快算术
  • 批准号:
    1319994
  • 财政年份:
    2013
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Interagency Agreement
AF: Small: RUI: A new and improved algorithm for fitting RNA backbone in crystallographic data
AF:小:RUI:一种新的改进算法,用于在晶体学数据中拟合 RNA 主链
  • 批准号:
    1218145
  • 财政年份:
    2012
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了