Sim-to-Real Deep Reinforcement Learning for legged robot locomotion with vision-based high dimensional data
使用基于视觉的高维数据进行腿式机器人运动的模拟到真实深度强化学习
基本信息
- 批准号:1950742
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This PhD will explore methods that allow legged robots to improve and adapt its gaits to various terrains. For the MSc the physics simulator was pre-programmed with the environment terrain and robot dimensions. Parameters such as friction coefficients and weight distributions were roughly estimated. However, for the PhD the robot will build a model of itself in a 3D environment using a combination of vision and depth sensing combined with orientation sensing and robot babbling. This will allow the robot to adjust the parameters of the simulated environment which may increase adaptability and reduce the reality gap.The aim is to contribute a novel method that allows any type of legged robot to manoeuvre from high dimensional input data. This method aims to address the adaptability problems with explicitly programmed algorithms whist also addressing the reality gap issues with PPO reinforcement learning. The input data will be from RGBD, joint parameters, orientation and tactile sensing. Note PPO performs exceptionally well with high dimension inputs and these will be required in order to identify the complexities of the real world.Aims and objectives:1. Build a legged robot capable of sensing its environment (i.e. RGBD, orientation and tactile sensors)2. Self-model Agent - Allow the robot to perform robot babbling and use the orientation, tactile and joint position sensors to self-model the agent3. Model Environment - Allow the robot to scan the room with RGBD sensors to model its terrain and identify its target location (i.e. a ball in a room)4. Train the simulated robot with reinforcement learning in the 3D world to determine a policy to reach the target location5. Deploy the trained policy on the physical robot 6. Measure the 'reality gap' between the robot's performance in simulation and the physical world.7. Adapt robot babbling and environment modelling accordingly.8. TRL 4 quadruped robot that can traverse previously unseen terrains/scenarios toward a goal
这个博士将探索方法,让腿式机器人,以改善和适应其步态,以各种地形。对于理学硕士来说,物理模拟器是用环境、地形和机器人尺寸预先编程的。对摩擦系数和重量分布等参数进行了粗略估计。然而,对于博士来说,机器人将使用视觉和深度传感结合方向传感和机器人牙牙学语在3D环境中构建自己的模型。这将允许机器人调整参数的模拟环境,这可能会增加适应性和减少现实gap.The的目的是有助于一种新的方法,允许任何类型的腿式机器人操纵从高维输入数据。这种方法旨在解决显式编程算法的适应性问题,同时也解决了PPO强化学习的现实差距问题。输入数据将来自RGBD、关节参数、方向和触觉传感。注意PPO在高维输入下表现得非常好,为了识别真实的世界的复杂性,需要这些输入。建立一个有腿机器人能够感知其环境(即RGBD,方向和触觉传感器)2.自模型代理-允许机器人执行机器人咿呀学语,并使用方向,触觉和关节位置传感器来自模型代理3。模型环境-允许机器人用RGBD传感器扫描房间,以对其地形进行建模并识别其目标位置(即房间中的球)4.在3D世界中用强化学习训练模拟机器人,以确定到达目标位置的策略5。在物理机器人上部署训练的策略6.测量机器人在模拟和物理世界中的表现之间的“现实差距”。7.适应机器人咿呀学语和相应的环境建模. TRL 4四足机器人,可以穿越以前看不见的地形/场景走向目标
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
- 批准号:30600737
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
- 批准号:60608018
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Real-time inversion using self-explainable deep learning driven by expert knowledge
使用由专家知识驱动的可自我解释的深度学习进行实时反演
- 批准号:
EP/Z000653/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Zeroshot learning of real-world AI by fusing large deep learning models and 3D virtual world
通过融合大型深度学习模型和 3D 虚拟世界,实现现实世界人工智能的零射击学习
- 批准号:
23H03426 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of real-time dosimetry system for radiotherapy using deep learning
利用深度学习开发放射治疗实时剂量测定系统
- 批准号:
23K07109 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deep-UV Microscopy for Real-Time Adequacy Analysis of Bone Marrow Aspirates
用于骨髓抽吸物实时充分性分析的深紫外显微镜
- 批准号:
10761397 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Real-time violence detection using smart camera stereovision video and efficient deep learning backbones
使用智能相机立体视觉视频和高效的深度学习主干进行实时暴力检测
- 批准号:
2877765 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Deep-learning assisted photoacoustic histology for real-time intraoperative pathological diagnosis
深度学习辅助光声组织学实时术中病理诊断
- 批准号:
10642628 - 财政年份:2023
- 资助金额:
-- - 项目类别:
More real than reality: using deep learning networks to resolve how people make sense of other people's behaviour
比现实更真实:使用深度学习网络来解决人们如何理解他人行为的问题
- 批准号:
2889133 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Development and Evaluation of Real-like Synthetic Construction Images to Enhance the Performances of Deep Neural Network for Construction Applications
开发和评估逼真的合成施工图像,以增强建筑应用中深度神经网络的性能
- 批准号:
RGPIN-2022-04429 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Search for real-time monitoring methods of feeding and swallowing using deep learning
利用深度学习寻找实时监测进食和吞咽的方法
- 批准号:
22K19673 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)