Deep-learning assisted photoacoustic histology for real-time intraoperative pathological diagnosis
深度学习辅助光声组织学实时术中病理诊断
基本信息
- 批准号:10642628
- 负责人:
- 金额:$ 9.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsAnimal OrganCancer PatientCancerousCell NucleusCessation of lifeClassificationClinicClinicalComputer AssistedComputer-Assisted DiagnosisCytoplasmic ProteinDNADetectionDevelopmentDiagnosisDiagnosticDyesElementsEnsureEquipmentEvolutionExcisionFreezingFrozen SectionsFutureHematoxylin and Eosin Staining MethodHistologyHospitalsHumanHuman ResourcesImageImage-Guided SurgeryImaging TechniquesLabelLasersLesionLightingMaintenanceMalignant NeoplasmsMasksMethodsMicroscopyMorphologic artifactsOncologyOperative Surgical ProceduresOpticsPathologicPathologistPathologyPatient-Focused OutcomesPatientsPattern RecognitionPhasePreparationPublishingPulse RatesRNARecurrent tumorResearch ProposalsResectedResolutionSamplingScanningSectioning techniqueSeriesSignal TransductionSlideSpecimenSpeedStainsStructureSubcellular structureSurfaceSurgeonSurgical OncologySurgical woundSystemTechniquesThickTimeTissuesTrainingTransducersTranslationsUltraviolet Raysabsorptionanimal imagingbonebone imagingcancer surgerycancer therapycellular imagingclinical practicecommercializationconvolutional neural networkcostdeep learningdeep neural networkdesignhistopathological examinationimage reconstructionimprovedmetermicroscopic imagingneural networkphotoacoustic imagingtissue processingtooltumorultravioletvirtual
项目摘要
Project Summary
Despite the advances in cancer treatment, surgery remains the cornerstone, and more than 80% of cancer
patients have a surgical procedure at some point in their cancer evolution. In oncology surgery, intraoperative
pathology provides surgical guidance and identification of tumor margins, allowing confirmation of complete
tumor resection before oncology surgeons close the surgical wound and helping patients avoid a second tumor
resection surgery. Most localized tumors with negative margin resection show improved patient outcomes and a
lower chance of tumor recurrence. However, the intraoperative frozen section technique suffers from a series of
limitations: tissue loss, compromised quality due to freezing artifacts, suboptimal cutting of fatty specimens, and
inability to diagnose bony lesions.
In our preliminary results, we have developed the 3D contour scanning ultraviolet photoacoustic microscopy (UV-
PAM) to acquire histology-like images of thick bone specimens, which addresses the long-standing challenge of
intraoperative bone histology. The rapid photoacoustic histology images of bone specimens well match the
conventional histology images stained by hematoxylin and eosin (H&E), allowing pathologists to identify the
cancerous features following existing pattern recognition parameters readily. Although these results showed the
feasibility of intraoperative photoacoustic histology of bone specimens, the system has a relatively slow imaging
speed fundamentally limited by the low laser repetition rate of UV lasers and applies only to only bone specimens.
This research proposal aims to develop a high-throughput photoacoustic histology platform for pathologists and
surgeons to diagnose intraoperatively and remotely with an imaging speed at least 100 times faster than any
published reflection-mode UV-PAM systems.
Specific Aim 1: Develop a structured illumination UV-PAM for ultrafast histology imaging of slide-free
specimens. Aim 1.1. We will develop an ultrafast reflection mode UV-PAM using multifocal illumination with a
single element transducer. Aim 1.2. We will design and fabricate DOEs for structured illumination UV-PAM with
an extended depth of focus for slide-free specimens with irregular surfaces to allow high-throughput imaging of
slide-free specimens in clinical settings.
Specific Aim 2: Implement neural networks for virtual staining of photoacoustic histology and real-time
intraoperative diagnosis. Aim 2.1. We will implement neural networks and unsupervised deep learning
techniques to virtually stain photoacoustic images in various tissue types. The utilization of virtual stained PAM
images for intraoperative diagnostic will be evaluated by pathologists in clinical practices. Aim 2.2. We will
develop and train a deep learning neural network to classify tumor types and stages in different tissues using
photoacoustic histology to build a computer-aided platform for real-time intraoperative diagnosis.
项目摘要
尽管癌症治疗取得了进展,但手术仍然是基石,80%以上的癌症
患者在癌症发展的某个阶段接受了外科手术。在肿瘤手术中,术中
病理学提供了手术指导和肿瘤边缘的识别,允许确认完整的
在肿瘤外科医生闭合手术伤口之前进行肿瘤切除,帮助患者避免第二个肿瘤
切除手术大多数局限性肿瘤的阴性切缘切除显示患者的预后改善,
降低肿瘤复发的几率。然而,术中冷冻切片技术存在一系列问题,
局限性:组织缺损、冷冻伪影导致的质量受损、脂肪标本切割欠佳,以及
无法诊断骨病变。
在我们的初步结果中,我们已经开发了三维轮廓扫描紫外光声显微镜(UV-
PAM)获取厚骨标本的组织学样图像,解决了
术中骨组织学检查。骨标本的快速光声组织学图像与
常规组织学图像由苏木精和伊红(H&E)染色,允许病理学家识别
癌症特征容易遵循现有的模式识别参数。虽然这些结果表明,
骨标本术中光声组织学的可行性,该系统具有相对较慢的成像
速度从根本上受到UV激光器的低激光重复率的限制,并且仅适用于骨样本。
该研究提案旨在为病理学家开发高通量光声组织学平台,
外科医生可以在术中和远程诊断,成像速度比任何
公开的反射模式UV-PAM系统。
具体目标1:开发用于无载玻片超快组织学成像的结构化照明UV-PAM
标本目标1.1。我们将开发一种超快反射模式的UV-PAM,使用多焦点照明,
单元件换能器目标1.2。我们将设计和制作用于结构照明UV-PAM的DOE,
对于具有不规则表面的无载玻片样本,
临床环境中的无载玻片标本。
具体目标2:实现用于光声组织学和实时虚拟染色的神经网络
术中诊断目标2.1。我们将实现神经网络和无监督深度学习
在各种组织类型中虚拟染色光声图像的技术。虚拟染色聚丙烯酰胺的应用
用于术中诊断的图像将由病理学家在临床实践中进行评价。目标2.2。我们将
开发和训练深度学习神经网络,以分类不同组织中的肿瘤类型和阶段
光声组织学,以建立一个计算机辅助平台,实时术中诊断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rui Cao其他文献
Rui Cao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 9.32万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 9.32万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 9.32万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 9.32万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 9.32万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 9.32万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 9.32万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 9.32万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 9.32万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 9.32万 - 项目类别:
Research Grant