Exploring advanced FDG PET-CT imaging feature analysis for more accurate diagnosis and outcome prediction in suspected large vessel vasculitis
探索先进的 FDG PET-CT 成像特征分析,以更准确地诊断和预测疑似大血管炎
基本信息
- 批准号:1958590
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to discover and validate predictive parameters extracted from FDG PET-CT images of patients with and without LVV that will allow the development of a radiomic model that can determine the prognosis of LVV patients effectively.Objectives:- Collate outcome data for a large single centre cohort of patients with baseline FDG PET-CT data- Use advanced feature analysis and machine learning to develop putative diagnostic and predictive imaging biomarkers in test and validation cohorts derived from FDG PET-CT images of patients with and without GCA from dataset from a single centre - Correlate outcomes with extracted parameters to determine which parameters have the best performance characteristics- Validate test performance within a multi-centre FDG PET-CT imaging cohort allowing for harmonisation of the process across different scanners. Data pooling facilitated as part of an established GCA multi-centre trial in the UK (TARGET Consortium, MRC)- Explore the potential of this process in (a) other forms of LVV, and (b) MRA and CTA imagingThe facilities used for this project will include:- Deep learning software to build a radiomic model- Image analysis software (LifeX)- Baseline FDG PET-CT data from the 2011-2017 Leeds LVV cohort - FDG PET-CT from patients who were tested but not diagnosed with LVV- FDG PET-CT data from other centres to validate the model - MRA & CTA data taken during the treatment of the 2011-2017 Leeds LVV cohortThe analysis of medical images requires developing an understanding of interactions between modality / modalities and disease. While PET-CT, MRA and CTA imaging of LVV is well established, not all the data provided by these scans will have been analysed; the relevant extracted features could provide valuable insights into the characteristics of the disease that have not been discovered through routine / traditional clinical approaches.The radiomic features (the parameters extracted) relevant to LVV prognosis are currently unknown but could include:- the heterogeneity of the vessel (textural analysis)- size, shape and location of inflammation- relationship with neighbouring tissues (requires statistical analysis considering parameters such as energy and entropy)- intensity of signal- density of tissue- parameters that may be unique to the illness and not established previouslyOnce the parameters are determined, their relationship to the disease and its phenotype may be established. The features will be vulnerable to image quality of the data and image processing methods such as over smoothing in the case of textural analysis. Therefore the methods will require optimisation and will not necessarily be directly transferable from previous work.Once the parameters have been established, we will create a novel radiomic model that can: (a) determine predictive biomarkers in a given image and (b) make patient outcome predictions. For these purposes, we will utilise deep learning with the help of a convolutional artificial neural network. The multiple layers of this network will serve a purpose, ranging from data extraction, through to the evaluation of a given feature. The image will cascade through the layers being weighted by the criteria and the model will make a judgement about the accuracy and precision of the prognosis. The model will need to be trained to recognise the predictive biomarkers with a large data set to minimise incorrect predictions.As the project will be co-supervised by clinicians at the forefront of LVV research, it will be designed to be clinically relevant and useful.
本项目的目的是发现和验证从有和没有LVV的患者的FDG PET-CT图像中提取的预测参数,这将允许开发一种放射组学模型,可以有效地确定LVV患者的预后。目的:- 整理具有基线FDG PET-CT数据的大型单中心患者队列的结果数据-使用先进的特征分析和机器学习来开发来自FDG PET的测试和验证队列中的推定诊断和预测成像生物标志物-来自单中心数据集的患有和不患有GCA的患者的CT图像-将结果与提取的参数相关联,以确定哪些参数具有最佳性能特征-在多中心FDG PET-CT成像队列中验证性能,从而允许不同扫描仪之间的过程协调。作为英国既定GCA多中心试验的一部分,促进数据汇集(TARGET Consortium,MRC)-探索该过程在(a)其他形式的LVV和(B)MRA和CTA成像中的潜力本项目使用的设施将包括:- 用于构建放射组学模型的深度学习软件-图像分析软件(LifeX)-来自2011-2017年利兹LVV队列的基线FDG PET-CT数据-来自被测试但未被诊断患有LVV的患者的FDG PET-CT-来自其他中心的用于验证模型的FDG PET-CT数据- MRA & 2011-2017年利兹LVV队列治疗期间采集的CTA数据医学图像分析需要了解模态/模态与疾病之间的相互作用。虽然LVV的PET-CT、MRA和CTA成像已经很好地建立,但并非所有这些扫描提供的数据都将被分析;相关提取的特征可以提供对通过常规/传统临床方法尚未发现的疾病特征的有价值的见解。与LVV预后相关的(提取的参数)目前尚不清楚,但可能包括:- 血管的异质性(纹理分析)-尺寸,炎症的形状和位置-与邻近组织的关系(需要考虑诸如能量和熵之类的参数的统计分析)-信号强度-组织密度-对于疾病可能是唯一的并且先前没有建立的参数一旦确定了参数,可以确定它们与疾病及其表型的关系。这些特征将容易受到数据的图像质量和图像处理方法的影响,例如在纹理分析的情况下过度平滑。因此,该方法将需要优化,并不一定是直接从以前的工作transferable.一旦参数已经建立,我们将创建一个新的放射组学模型,可以:(a)确定在给定的图像和(B)预测患者的预后预测生物标志物。为此,我们将在卷积人工神经网络的帮助下利用深度学习。该网络的多个层将用于一个目的,从数据提取到给定特征的评估。图像将级联通过由标准加权的层,并且模型将对预测的准确性和精确度做出判断。该模型将需要进行训练,以识别具有大量数据集的预测生物标志物,以最大限度地减少错误预测。由于该项目将由LVV研究前沿的临床医生共同监督,因此它将被设计为临床相关和有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
- 批准号:61201232
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
LTE-Advanced中继网络关键技术研究
- 批准号:61171096
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
- 批准号:51079080
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
IMT-Advanced协作中继网络中的网络编码研究
- 批准号:61040005
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
面向IMT-Advanced的移动组播关键技术研究
- 批准号:61001071
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
- 批准号:61001116
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
晚期糖基化终产物受体与视网膜母细胞瘤蛋白在前列腺癌细胞中的相互作用及意义
- 批准号:30700835
- 批准年份:2007
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase II: Innovative Glass Inspection for Advanced Semiconductor Packaging
SBIR 第二阶段:先进半导体封装的创新玻璃检测
- 批准号:
2335175 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Cooperative Agreement
STTR Phase I: Advanced Lithium Metal Anodes for Solid-State Batteries
STTR 第一阶段:用于固态电池的先进锂金属阳极
- 批准号:
2335454 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EvaluATE: The Evaluation Hub for Advanced Technological Education
EvaluATE:先进技术教育评估中心
- 批准号:
2332143 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Highly Ce3+ - doped Glass Material for Advanced Photonic Devices
用于先进光子器件的高掺杂 Ce3 玻璃材料
- 批准号:
2310284 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Advanced HR-ICP-MS facility for marine, Antarctic and environmental samples
用于海洋、南极和环境样品的先进 HR-ICP-MS 设施
- 批准号:
LE240100039 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Zwitterion-based electrolytes for advanced energy technologies
用于先进能源技术的两性离子电解质
- 批准号:
DP240101407 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Decoupling Corrosion of Electrode and Electrolyte in Advanced Batteries
先进电池中电极和电解质的解耦腐蚀
- 批准号:
24K17761 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
- 批准号:
24K20733 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Induction Melt Incremental Thermoforming of Advanced Thermoplastic Composites
先进热塑性复合材料的感应熔融增量热成型
- 批准号:
EP/X02766X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant