Can Machine Learning be Used as a Tool to Clean 3D Point Clouds for CAD Model Construction & Meshing?
机器学习能否用作清理 3D 点云以进行 CAD 模型构建的工具
基本信息
- 批准号:2023872
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses the problem of cleaning point clouds as a pre-processing step for creating respective CAD models and meshes, ultimately for numerical engineering applications. Methods of visualising the findings will also be explored.High resolution laser scans rarely come without noise or imperfections. These scans typically come in the form of point clouds, high resolution arrangements of points which represent surfaces. When considering engineering applications, these three-dimensional point clouds are subsequently transformed into a mesh as part of the reverse-engineering process, whereby the points are connected via the surfaces of interconnected polygons. Simulations can then be ran using these meshes and analysed using methods such as finite element analysis (FEA). The goal of cleaning these scans is to remove the points which are either not relevant for the purpose or counter-productive. Any noise or imperfections in the original scan can be exacerbated when the cloud is converted in to a mesh which will have consequences when running simulations on the model. Manually cleaning these scans can be a very time-intensive process and while many software packages offer the ability to do this, an efficient automated or semi-automated process would be beneficial. In this project, a machine learning approach is adopted to pre-process point clouds by considering the subsequent steps in the reverse-engineering and numerical engineering pipeline. The focus will initially be on classification and clustering algorithms to find and identify imperfections which could affect the analysis results in later stages.It has been previously shown that boosted random forests can be used to aid a user in point-cleaning. One investigation will be to identify if more complex machine learning algorithms can further automate this process without a drastic increase in inefficiencies such as time and computer resources. Deep learning is an exciting, relatively modern area which is showing positive applications in many areas and so, ultimately, will be explored for the aforementioned implementation.An interesting part of this project will be investigating the effects of various input features for the models. Cartesian-based (or potentially otherwise) locations, respective normals, RGB colour channels and light intensities are some of the parameters which will be considered. Variations in the parameters in the models themselves will also be tested; numbers of decision trees in forests, pooling methods and numbers of layers in neural networks, variations in k in k-clustering algorithms are examples of this. Dimensionality reduction techniques such as principal component analysis will also be investigated to see if increases in performance or efficiency can be achieved.Visualisation of the results of these processes is an important part of the later stages of this project. Good visualisation of the work done in relevant areas of the scans could provide benefits to those potentially working in manually further cleaning the scans as well as engineers working directly at the meshing and numerical-engineering stages. Comparisons of the methods of visualising the various stages of this processing will be conducted.
该项目解决了清理点云的问题,作为创建相应CAD模型和网格的预处理步骤,最终用于数字工程应用。高分辨率激光扫描很少没有噪声或缺陷。这些扫描通常以点云的形式出现,点云是代表表面的点的高分辨率排列。当考虑工程应用时,这些三维点云随后被转换成网格,作为逆向工程过程的一部分,由此点通过互连多边形的表面连接。然后可以使用这些网格进行模拟,并使用有限元分析(FEA)等方法进行分析。清理这些扫描的目标是删除与目的无关或适得其反的点。当云转换为网格时,原始扫描中的任何噪声或缺陷都会加剧,这将在模型上运行模拟时产生后果。手动清理这些扫描可能是一个非常耗时的过程,虽然许多软件包提供了这样做的能力,一个有效的自动化或半自动化的过程将是有益的。在这个项目中,通过考虑逆向工程和数值工程管道中的后续步骤,采用机器学习方法来预处理点云。最初的重点将是分类和聚类算法,以发现和识别可能会影响分析结果的不完善之处,在以后的stages.It先前已被证明,提升随机森林可以用来帮助用户在点清洗。一项调查将确定更复杂的机器学习算法是否可以进一步自动化这一过程,而不会大幅增加时间和计算机资源等效率低下的情况。深度学习是一个令人兴奋的,相对现代的领域,在许多领域都显示出积极的应用,因此,最终,将探索上述实施。这个项目的一个有趣的部分将是研究模型的各种输入特征的影响。基于笛卡尔(或潜在地以其他方式)的位置、相应的法线、RGB颜色通道和光强度是将被考虑的一些参数。模型本身参数的变化也将被测试;森林中决策树的数量,神经网络中的池化方法和层数,k聚类算法中k的变化都是这样的例子。此外,我们亦会研究减少偏差的技术,例如主成分分析,以了解是否可以提高效能或效率。这些过程的结果的视觉化,是本项目后期工作的重要部分。在扫描的相关区域中完成的工作的良好可视化可以为那些可能在手动进一步清洁扫描中工作的人以及直接在网格划分和数字工程阶段工作的工程师提供好处。将对这一过程的各个阶段的可视化方法进行比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Multisensory signals used for learning
用于学习的多感官信号
- 批准号:
RGPIN-2017-05647 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Research on the real-time fall prevention system using IMU sensors based on machine learning methods which can be used anywhere on daily basis
基于机器学习方法的IMU传感器实时防跌倒系统研究,可在日常任何地方使用
- 批准号:
21K12798 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding the Reliability and Transferability of Machine Learning Methods Used in High Throughput Reaction Discovery and Optimisation
了解高通量反应发现和优化中使用的机器学习方法的可靠性和可迁移性
- 批准号:
2484402 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Multisensory signals used for learning
用于学习的多感官信号
- 批准号:
RGPIN-2017-05647 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
How Can Co-Creation Be Used To Develop And Adapt Learning Materials For The Safe And Supported Self-Management Of Medication Abortion In Humanitarian
如何利用共同创造来开发和改编学习材料,以实现人道主义药物堕胎的安全和支持性自我管理
- 批准号:
2606179 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Multisensory signals used for learning
用于学习的多感官信号
- 批准号:
RGPIN-2017-05647 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Identifying and mitigating bias in machine learning models used in population health
识别和减轻人口健康中使用的机器学习模型中的偏差
- 批准号:
442938 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Operating Grants
Identifying an Error Detection Circuit used for Internally Guided Learning
识别用于内部引导学习的错误检测电路
- 批准号:
10066276 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Can machine learning be used to predict antidepressant use outcome longitudinally?
机器学习可以用来纵向预测抗抑郁药物的使用结果吗?
- 批准号:
2277816 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
Multisensory signals used for learning
用于学习的多感官信号
- 批准号:
RGPIN-2017-05647 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual