Recurrence and dynamical Borel-Cantelli results in dynamical systems
动力系统中的递归和动力 Borel-Cantelli 结果
基本信息
- 批准号:2071951
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to understand extremal processes for chaotic dynamical systems. The scope lies at the interface of mathematical analysis and probability. A challenging and active area in dynamical systems is that of return time statistics. Namely, given a dynamical system and a specific region of phase space, what is the probability distribution that governs the times of first return to this region? The project aims to exploit recent developments on the theory of return time statistics to determine (weak) convergence to an extremal process for dynamical systems. Such processes arise naturally within extreme value theory, and can be used to determine the probabilistic properties of the time series of maxima, as generated by the dynamical system. In the case of suitably normalised Birkhoff sums the natural limit process arising is that of a Brownian motion. Thus this project aims to understand the corresponding limit processes for normalised maxima of the time series. For time series generated by independent identically distributed random variables, weak convergence to an extremal process is known to occur. However, for time series generated by a dynamical system new ideas are needed to establish convergence. This project will develop a theory to determine when weak convergence to an extremal process occurs for a general dynamical system, and apply the theory to particular examples such as discrete time hyperbolic dynamical systems (e.g. Anosov and Axiom A systems), and continuous time chaotic systems governed by ordinary differential equations.This project will use approaches in mathematical analysis of dynamical systems, and will be of benefit to those seeking to work in pure or applied mathematics, or to those working within statistical modelling of extremes for weather/climate. Given good progress, the project will explore extremes in low dimensional weather models (e.g. Lorenz equations).This project uses theoretical approaches within dynamical systems and ergodic theory. There will be industrial collaboration via the contacts of the lead supervisor. This includes the Met Office, and Willis Towers Watson through the current EPSRC project (EP/P034489/1): where the partners have provided in-kind funding to support their time on the project through workshop participation, and through regular research meetings on the development of practical applications of the theory (e.g. to weather/climate). The PhD student will engage with these organisations through planned workshops, and meetings organised by the supervisor (who is PI on EP/P034489/1).
这个项目旨在了解混沌动力系统的极值过程。范围在于数学分析和概率的接口。动力系统中一个具有挑战性和活跃的领域是返回时间统计。也就是说,给定一个动力学系统和一个特定的相空间区域,控制第一次返回到这个区域的时间的概率分布是什么?该项目的目的是利用最近的发展理论的返回时间统计,以确定(弱)收敛到一个极值过程的动力系统。这样的过程在极值理论中自然出现,并且可以用于确定由动力系统生成的最大值的时间序列的概率特性。在适当规范化的伯克霍夫和的情况下,自然极限过程是布朗运动。因此,该项目旨在了解时间序列的归一化最大值的相应极限过程。对于由独立同分布随机变量生成的时间序列,已知会发生弱收敛到极值过程。然而,对于由动力系统生成的时间序列,需要新的想法来建立收敛。本计画将发展一个理论,以决定一般动力系统何时会弱收敛至极值过程,并将此理论应用于特定的例子,如离散时间双曲动力系统(例如Anosov和Axiom A系统),以及由常微分方程控制的连续时间混沌系统。本项目将使用动力系统的数学分析方法,并将有利于那些寻求在纯数学或应用数学工作,或那些在极端天气/气候的统计建模工作。如果进展良好,该项目将探索低维天气模型(例如Lorenz方程)中的极端情况。该项目使用动力系统和遍历理论中的理论方法。将通过主管的联系进行工业合作。这包括英国气象局和Willis Towers沃森通过当前的EPSRC项目(EP/P034489/1):合作伙伴通过参加研讨会和定期研究会议来支持他们在项目上的时间(例如天气/气候)。博士生将通过计划中的研讨会和由主管(EP/P034489/1上的PI)组织的会议与这些组织接触。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
- 批准号:
2349508 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大风暴潮的多尺度动力学过程
- 批准号:
2342516 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
- 批准号:
2342407 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:
2337506 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
- 批准号:
2337942 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant