NOVEL AUREOLIC ACID TYPE ANTITUMOR AGENTS
新型金黄色酸型抗肿瘤剂
基本信息
- 批准号:6360277
- 负责人:
- 金额:$ 25.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION: (provided by applicant):Mithramycin (MTM) is an aureolic acid
antimicrobial and antitumor agent produced by various Streptomyces species
including S. argillaceus, which has been used, e.g., for the treatment of
testicular carcinoma. In addition, MTM is unique among anticancer agents in
that it also has been used clinically to treat cancer-caused malignant
hypercalcemia and Paget's bone disease. However, MTM's bone marrow, hepatic,
and renal toxicity limit its widespread clinical use. It is proposed to
investigate various aspects of the biosynthesis of the antitumor and
osteoclast-inhibiting agent mithramycin in order to develop analogs with
increased therapeutic indices, which also may allow the separation of the two
principal effects of MTM, (i) on cancer growth and (ii) on osteoclasts. This
will lead to novel antitumor agents and/or to therapeutics against osteoporosis
and other diseases related to bone growth disorders, and bears the potential
for a novel gene therapy concept in future. Combinatorial biosynthetic methods
will be used to provide an array of MTM analogs. For this, the biosynthetic
pathway to MTM, which is dominated by a type II polyketide synthase (PKS),
needs to be further characterized. Especially genes encoding enzymes
responsible for the late biosynthetic steps, the post-PKS tailoring enzymes,
particularly oxidoreductases and group transferases will be modified Resulting
mutant strains will help to determine the series of events within the
biosynthetic pathway and will characterize substrates and function of important
enzymes in the MTM pathway. This information will be used to design novel
compounds with specific activity-increasing functionality. In context with the
mechanism of action of MTM on osteoclasts, we want to explore whether MTM
derivatives can effect the expression of c-src, a proto-oncogene necessary for
the osteoclastic bone resorption, following the novel hypothesis that MTM and
its derivatives inhibit osteoclast bone resorption by blocking Sp 1 binding to
the promoter region of the c-src proto-oncogene.
The following three specific aims will be addressed:
(1) To further characterize the biosynthetic pathway of mithramycin and to
develop new niithramycin derivatives through selective gene inactivation and
product identification. Various group transferases and oxidoreductases will be
investigated. In addition, the mtm genes will be recombined with promising
deoxysugar biosynthesis, glycosyltransferase and oxygenase encoding genes from
other pathways to develop novel niithramycin analogs modified in their
saccharide and/or 0-atom pattern.
(2) The two oxygenases of the MTM pathway, MtmOII and MtmOIV, will be
investigated. The work on MtmOII, an early-acting oxygenase, will help to
identify the missing link between the final PKS product and
4-demethylpremithramycinone, the earliest mithramycin precursor documented to
date. Tetracyclic niithramycin analogs will be converted into their tricycic
and expected more active counterparts by overexpressing oxygenase MtmOIV in the
various glycosyltransferase deletion mutants.
(3) To assay the binding properties of MTM and its novel analogs to the GC-rich
elements in the c-myc and c-src promoters and their ability to prevent Sp 1
binding. Testing the high-affinity c-myc will follow thisand c-src binding
compounds for inhibition of gene expression in human cancer cells and for their
effects on growth and viability of normal and cancer cells. Finally, promising
c-src inhibiting analogs will be analyzed for activity against
osteoclastmediated bone resorption.
描述:(申请人提供):米特拉霉素(MTM)是一种金酸
几种链霉菌生产的抗菌抗肿瘤药物
包括已被用于例如治疗
睾丸癌。此外,MTM在抗癌药物中是独一无二的
它还被用于临床治疗由癌症引起的恶性肿瘤
高钙血症和Paget‘s骨病。然而,MTM的骨髓,肝脏,
肾毒性限制了其在临床上的广泛应用。现建议:
研究抗肿瘤药物生物合成的各个方面
破骨细胞抑制剂米曲霉素,以开发类似物
增加治疗指数,这也可能使两者分离
MTM的主要作用是:(1)促进肿瘤生长;(2)促进破骨细胞生长。这
将导致新的抗肿瘤药物和/或治疗骨质疏松症
和其他与骨骼生长障碍相关的疾病,并具有潜在的
为未来一种新的基因治疗概念。组合生物合成方法
将用于提供MTM模拟数组。为此,生物合成的
MTM的途径,其由II型聚酮合成酶(PKS)主导,
需要进一步确定其特征。尤其是编码酶的基因
负责后期的生物合成步骤,后PKS剪裁酶,
特别是氧化还原酶和基团转移酶将被修饰,从而
突变株将有助于确定
生物合成途径及其将表征底物和功能的重要
MTM途径中的酶。这些信息将被用来设计小说
具有特定活性增加功能的化合物。在与
MTM对破骨细胞的作用机制,我们想要探讨MTM是否
衍生物可以影响c-src的表达,c-src是
破骨细胞性骨吸收,遵循新的假说MTM和
其衍生物通过阻断Sp-1结合抑制破骨细胞骨吸收
原癌基因c-src启动子区域。
将实现以下三个具体目标:
(1)进一步确定米曲霉素的生物合成途径,并
通过选择性基因失活和基因工程技术开发新的硝酸拉霉素衍生物
产品标识。各种基团转移酶和氧化还原酶将
调查过了。此外,MTM基因将与有希望的基因重组
脱氧糖的生物合成、糖基转移酶和加氧酶编码基因
开发新型硝酸霉素类似物的其他途径
糖和/或0原子模式。
(2)MTM途径的两种加氧酶MtmOII和MtmOIV将被
调查过了。对一种早期作用的加氧酶MtmOII的研究将有助于
确定最终的PKS产品和
4-去甲基普雷米松,最早的米特拉霉素前体
约会。四环尼特拉霉素类似物将转化为它们的三环化合物
通过在细胞中过表达加氧酶MtmOIV来期待更活跃的对应物
各种糖基转移酶缺失突变体。
(3)测定MTM及其新的富含GC类似物的结合特性
C-myc和c-src启动子中的元件及其预防Sp-1的能力
有约束力的。测试高亲和力的c-myc将遵循这一点和c-src结合
抑制人癌细胞基因表达的化合物及其作用
对正常细胞和癌细胞的生长和活力的影响。最后,前景看好
C-src抑制类似物的活性将被分析
破骨细胞介导的骨吸收。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jurgen T Rohr其他文献
Jurgen T Rohr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jurgen T Rohr', 18)}}的其他基金
Exploring Post-Type II PKS Frame Modifications
探索 Post-Type II PKS 框架修改
- 批准号:
9110311 - 财政年份:2014
- 资助金额:
$ 25.46万 - 项目类别:
BIOSYNTHETIC KEY STEPS OF ANGUCYCLINE ANTITUMOR DRUGS
安古环素抗肿瘤药物的生物合成关键步骤
- 批准号:
7845298 - 财政年份:2009
- 资助金额:
$ 25.46万 - 项目类别:
BIOSYNTHETIC KEY STEPS OF ANGUCYCLINE ANTITUMOR DRUGS
安古环素抗肿瘤药物的生物合成关键步骤
- 批准号:
6928092 - 财政年份:2005
- 资助金额:
$ 25.46万 - 项目类别:
BIOSYNTHETIC KEY STEPS OF ANGUCYCLINE ANTITUMOR DRUGS
安古环素抗肿瘤药物的生物合成关键步骤
- 批准号:
7408026 - 财政年份:2005
- 资助金额:
$ 25.46万 - 项目类别:
BIOSYNTHETIC KEY STEPS OF ANGUCYCLINE ANTITUMOR DRUGS
安古环素抗肿瘤药物的生物合成关键步骤
- 批准号:
7056070 - 财政年份:2005
- 资助金额:
$ 25.46万 - 项目类别:
BIOSYNTHETIC KEY STEPS OF ANGUCYCLINE ANTITUMOR DRUGS
安古环素抗肿瘤药物的生物合成关键步骤
- 批准号:
7228414 - 财政年份:2005
- 资助金额:
$ 25.46万 - 项目类别:
BIOSYNTHETIC KEY STEPS OF ANGUCYCLINE ANTITUMOR DRUGS
安古环素抗肿瘤药物的生物合成关键步骤
- 批准号:
7584055 - 财政年份:2005
- 资助金额:
$ 25.46万 - 项目类别:
相似海外基金
CAREER: Using Microbial Bioproduction Platform to Elucidate Phytochemical Biosynthesis - Strigolactone as An Example
职业:利用微生物生物生产平台阐明植物化学生物合成——以独脚金内酯为例
- 批准号:
2420331 - 财政年份:2024
- 资助金额:
$ 25.46万 - 项目类别:
Continuing Grant
Decoding functional glycan biosynthesis
解码功能性聚糖生物合成
- 批准号:
BB/Y000102/1 - 财政年份:2024
- 资助金额:
$ 25.46万 - 项目类别:
Research Grant
Investigating biosynthesis of the newly discovered natural product euglenatide and distribution across the breadth of Euglenoid algae
研究新发现的天然产物眼虫肽的生物合成及其在眼虫类藻类中的分布
- 批准号:
EP/Y003314/1 - 财政年份:2024
- 资助金额:
$ 25.46万 - 项目类别:
Research Grant
Discovery and reconstitution of securinine alkaloid biosynthesis
叶秋碱生物碱生物合成的发现和重建
- 批准号:
BB/Y003586/1 - 财政年份:2024
- 资助金额:
$ 25.46万 - 项目类别:
Research Grant
Cross talk between DNA replication and LPS biosynthesis during cell growth
细胞生长过程中 DNA 复制和 LPS 生物合成之间的串扰
- 批准号:
BB/Y001265/1 - 财政年份:2024
- 资助金额:
$ 25.46万 - 项目类别:
Research Grant
RUI: BIOPOLYMER - BIObricks POLYketide Metabolic EngineeRing platform for unraveling the biosynthesis of higher anthracyclines
RUI:BIOPOLYMER - BIObricks 聚酮化合物代谢工程平台,用于揭示高级蒽环类药物的生物合成
- 批准号:
2321976 - 财政年份:2024
- 资助金额:
$ 25.46万 - 项目类别:
Standard Grant
Molecular mechanisms of Pel biosynthesis
Pel生物合成的分子机制
- 批准号:
489549 - 财政年份:2023
- 资助金额:
$ 25.46万 - 项目类别:
Operating Grants
The role of cholesterol biosynthesis in CAF for tumorigenesis
CAF 中胆固醇生物合成对肿瘤发生的作用
- 批准号:
23K14585 - 财政年份:2023
- 资助金额:
$ 25.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 25.46万 - 项目类别:
Studentship
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 25.46万 - 项目类别:














{{item.name}}会员




