General forward model
通用正演模型
基本信息
- 批准号:2109450
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Reasearch ContextArtificial intelligence (AI) algorithms such as deep learning has been used successfully in many fields such as Computer Vision, Natural Language Processing and Decision making systems.AI has been particularly successful in learning how to play games such as the ancient chinese game of Go, Atari games such as Breakout and Pong, and more recently complex games such as Starcraft and DOTA2.Many successful algorithms require an ability to effectively see-forward in time, and plan next moves based on the outcome of these internal experiments. This usually requires access to a perfect underlying model of the sytem, or a very accurate hand-crafted replica of the underlying system. There have been several attempts recently to actually build models to predict the possible future outcomes and plan accordingly without access to the underlying model.Aims and ObjectivesThe aim of this research is to create an efficient and genric way for simulated environments to be accurately predicted. There are several questions that will be answered by this research:Can predictive models of the simulated environment improve the results of training?Are accurate models of the environment necessary to train AI algorithms to perform complex tasks? Or can models that effectively "filter" unecessary information be used?In games with several players which amy or may not have predictable actions, can predictive models be used to create better adversaries?Can predictive models of simulated environments be used to understand risk?Potential Applications and benefitsUsing games as a test-bed for research has advantages in safety, cost and control of time. For example, when training self-driving cars to avoid collisions. In a simulated environment,the cars can make mistakes without endangering the public; they can exist entirely in software and no physical components need to be maintained or replaced; simulations can be 'sped up' meaning that several hours of training time can be compressed into minutes.If there are ways to predict outcomes in real-world environments, then the applications of this research are widespread. Being able to accurately predict the outcomes of actions several seconds into the future would provide a large advantage for safetly-critical applications. Additionally in the context of environments with hard to predict parameters, AI algorithms that can plan ahead for best and worse case scenarios would be able to understand underlying risk in it's actions.
深度学习等人工智能(AI)算法已成功应用于计算机视觉、自然语言处理和决策系统等许多领域。AI在学习如何玩游戏方面特别成功,如中国古代的围棋游戏,Atari游戏,如Breakout和Pong,以及最近的复杂游戏,如《星际争霸》和《DOTA2》。许多成功的算法都需要能够及时有效地预见未来,并根据这些内部实验的结果规划下一步行动。这通常需要访问系统的完美底层模型,或者底层系统的非常精确的手工复制品。最近已经有几次尝试,实际上建立模型来预测未来可能的结果,并相应地计划,而无需访问底层model.Aims和ObjectivesThe本研究的目的是创建一个有效的和genric模拟环境的方式来准确地预测。这项研究将回答几个问题:模拟环境的预测模型能否提高训练结果?精确的环境模型是否是训练AI算法执行复杂任务所必需的?或者可以使用有效“过滤”不必要信息的模型?在有多个玩家的游戏中,玩家的行为可能是不可预测的,预测模型能用来创造更好的对手吗?模拟环境的预测模型可以用来理解风险吗?潜在的应用和好处使用游戏作为研究的试验台在安全、成本和时间控制方面具有优势。例如,当训练自动驾驶汽车避免碰撞时。在模拟环境中,汽车可以犯错误而不会危及公众;它们可以完全存在于软件中,不需要维护或更换物理组件;模拟可以“加速”,这意味着几个小时的训练时间可以压缩到几分钟。如果有方法预测现实世界环境中的结果,那么这项研究的应用将非常广泛。能够准确预测未来几秒钟的动作结果将为安全关键型应用提供很大的优势。此外,在参数难以预测的环境中,可以提前计划最佳和最坏情况的AI算法将能够理解其行动中的潜在风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Banach空间中Forward-Backward分裂法研究
- 批准号:11901171
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
胞质分裂期RhoA的时空调控分子机制研究
- 批准号:31771500
- 批准年份:2017
- 资助金额:58.0 万元
- 项目类别:面上项目
几类随机观察风险模型中的税收与最优分红问题
- 批准号:11601382
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
Forward-Looking与Backward-Looking相结合的投资组合管理
- 批准号:71471180
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
多维风险模型及其若干相关问题研究
- 批准号:11401498
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
几类带有loss-carry-forward税收的风险模型的研究
- 批准号:11226203
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
D0物理e+e-电荷前后向不对称性实验测量
- 批准号:10875114
- 批准年份:2008
- 资助金额:42.0 万元
- 项目类别:面上项目
相似海外基金
Genetic studies of a pleiotropic transmembrane protease: insight from color variation in non-model organisms
多效性跨膜蛋白酶的遗传研究:从非模型生物体颜色变化中获得洞察
- 批准号:
10754001 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Molecular, Cellular, and Circuit Mechanisms of Nociception Behavior
伤害感受行为的分子、细胞和回路机制
- 批准号:
10552222 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Role of Phosphorylation in Determining Circadian Period Length and Temperature Compensation
磷酸化在确定昼夜节律长度和温度补偿中的作用
- 批准号:
10678253 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Core C - Mutagenesis, Screening and Cryopreservation
核心 C - 诱变、筛选和冷冻保存
- 批准号:
10642552 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Antibiotic tolerance as a stepping stone to tuberculosis drug-resistance
抗生素耐受性是结核病耐药性的垫脚石
- 批准号:
10592979 - 财政年份:2023
- 资助金额:
-- - 项目类别: