How does a plant pathogen hijack its host's secretory pathway?

植物病原体如何劫持宿主的分泌途径?

基本信息

  • 批准号:
    2110940
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Background. Plant-parasitic nematodes are important agricultural pests that have complex interactions with their host. The most damaging species secrete effector proteins into their host roots to induce and maintain unique structures, termed feeding-sites. A striking feature of the affected root cells is proliferated cytoplasm enriched in organelles, formed at the expense of the central vacuole. Our core hypothesis is that nematodes can use effectors to re-programme membrane trafficking of plant cells to achieve this fundamental remodelling whilst also exploiting the secretory pathway to exert effector function.Objectives.1. Characterise the early changes to secretory pathway organelles that occur in plant parasitic nematode feeding sites.2. Investigate the role of nematode effectors in influencing secretion, ER retention and vacuolar transport.3. Elucidate the pathways by which nematode effectors introduced into the host cytoplasm are delivered to the apoplast.Novelty. The mechanism driving the cytological changes that occur in nematode feeding sites, and the specific effectors involved, are currently unknown. The work will also provide new insights into protein trafficking pathways in plants. Timeliness. The project is facilitated by tools recently developed by the Denecke Group, such as the full portfolio of vacuolar and endosomal markers and secretory cargo protoplast assays.Experimental Approach. Double-fluorescent reporter lines of Arabidopsis with different secretory pathway organelles marked will be infected with nematodes. Confocal microscopy will be used to examine subcellular changes taking place during the early stages of feeding site formation. A range of nematode effectors will be expressed in secretory cargo protoplast assays to identify those that influence vacuolar and/or ER function. Yeast-2-hybrid analysis will identify plant interacting partners for effectors of interest - confirmed by coimmunoprecipitation. Protoplast secretion assays using native and mutant effectors will define the export pathway of nematode effectors that function in the apoplast despite being delivered into the cytoplasm.The project is built on the hypothesis that plant parasitic nematodes can re-programme embrane trafficking of host plant cells so that the normal route to maintain the central vacuole is eliminated to enable expansion of the plasma membrane and the ribosome rich cytosol. The student will test this hypothesis and establish if the secreted protein effectors produced by the nematode are responsible for the fundamental reprogramming of the plant secretory pathway. By dissecting the mechanisms involved in this parasitic interaction, the project will shed new light on a key aspect of plant cell biology.
背景。植物寄生线虫是重要的农业害虫,与寄主有复杂的相互作用。最具破坏性的物种分泌效应蛋白到它们的宿主根部,以诱导和维持独特的结构,称为取食部位。受影响的根细胞的一个显著特征是细胞器丰富的细胞质增生,以牺牲中央液泡为代价形成。我们的核心假设是,线虫可以利用效应物重新编程植物细胞的膜运输,以实现这种基本的重塑,同时也利用分泌途径发挥效应功能。描述植物寄生线虫取食部位分泌途径细胞器的早期变化。研究线虫效应物在影响分泌、内质网滞留和液泡运输中的作用。阐明引入宿主细胞质的线虫效应物传递到胞外体的途径。驱动线虫取食部位细胞学变化的机制,以及所涉及的具体效应物,目前尚不清楚。这项工作还将为植物蛋白质运输途径提供新的见解。及时性。该项目由Denecke集团最近开发的工具促进,如液泡和内体标记和分泌货物原生质体测定的完整组合。实验方法。标记不同分泌途径细胞器的拟南芥双荧光报告系会被线虫感染。共聚焦显微镜将用于检查在进食部位形成的早期阶段发生的亚细胞变化。一系列线虫效应物将在分泌货物原生质体检测中表达,以确定那些影响液泡和/或内质网功能的效应物。酵母-2杂交分析将确定感兴趣效应物的植物相互作用伙伴-通过共免疫沉淀确认。原生质体分泌分析使用原生和突变效应物将定义线虫效应物的输出途径,这些效应物在外质体中起作用,尽管被输送到细胞质中。该项目建立在假设植物寄生线虫可以重新编程寄主植物细胞的膜运输,从而消除维持中央液泡的正常途径,从而使质膜和富含核糖体的细胞质扩张。学生将测试这一假设,并确定线虫产生的分泌蛋白效应器是否负责植物分泌途径的基本重编程。通过剖析这种寄生相互作用的机制,该项目将揭示植物细胞生物学的一个关键方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

衍射光学三维信息加密与隐藏的研究
  • 批准号:
    60907004
  • 批准年份:
    2009
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF Postdoctoral Fellowship in Biology FY 2021: The invasive tradeoffs hypothesis: how does wetland plant removal affect microbial and nutrient linkages
2021 财年 NSF 生物学博士后奖学金:侵入性权衡假设:湿地植物的清除如何影响微生物和营养物的联系
  • 批准号:
    2109778
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
How does the fungal pathogen Botrytis cinerea regulate its virulence mechanisms and can we use network re-wiring for plant immunity?
真菌病原体灰葡萄孢如何调节其毒力机制?我们能否利用网络重连来实现植物免疫?
  • 批准号:
    2752178
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
NSF Postdoctoral Fellowship in Biology FY 2021: How does arbuscular mycorrhizal fungi impact pollination and plant fitness in an anthropogenically disturbed environment?
2021 财年 NSF 生物学博士后奖学金:在人为干扰的环境中,丛枝菌根真菌如何影响授粉和植物适应性?
  • 批准号:
    2109806
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
How does elevated tropospheric ozone exposure affect plant health over time?
随着时间的推移,对流层臭氧暴露增加如何影响植物健康?
  • 批准号:
    2439070
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
How does "Coelacanth" in plant kingdom cope under hyper-stress environments?
植物界的“腔棘鱼”如何应对高压环境?
  • 批准号:
    20K21315
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
How Does Rumination Alter Learning and Choice Mechanisms in Reinforcement Learning?
反刍如何改变强化学习中的学习和选择机制?
  • 批准号:
    10237171
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
How Does Rumination Alter Learning and Choice Mechanisms in Reinforcement Learning?
反刍如何改变强化学习中的学习和选择机制?
  • 批准号:
    10066710
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
How does the plant decode self- and non-self-signals to balance immune response and growth?
植物如何解码自体和非自体信号以平衡免疫反应和生长?
  • 批准号:
    2444970
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
How does nutritional status affect plant immunity and disease?
营养状况如何影响植物免疫力和疾病?
  • 批准号:
    BB/T509000/1
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Training Grant
How does the plant regulate receptor signaling to balance immune response and growth?
植物如何调节受体信号传导以平衡免疫反应和生长?
  • 批准号:
    2116959
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了