Novel Target Tracking Methods for Combining Passive and Active Sensors
结合无源和有源传感器的新颖目标跟踪方法
基本信息
- 批准号:2114068
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Leonardo manufacture both active sensors and passive sensors for use with, for example, air platforms (e.g. F16s and drones). Active sensors, such as radars, can provide accurate range information but emit radiation to do so, reducing the extent to which sensing can be covert. Conversely, passive sensors, such as cameras, do not emit radiation in the same way, but are not easily configured to provide range information. This studentship relates to fusing the information from such sensors to maximise both the overall systems performance and the covert nature of the sensing.Traditionally, the information from such sensors is combined at a high level of abstraction. However, the increasing availability of communications bandwidth and processing power make it possible to consider fusing the data at a lower level of abstraction. This should permit a cognitive approach to the fusion of information such that the sensors operation are adapted in real-time to explicitly maximise performance and covertness: for example, a radar might be used initially to infer an objects range but a camera might subsequently be used to maintain a track on the object. Such a cognitive capability is anticipated to improve the fidelity and accuracy of target tracking, in particular.High performance target tracking algorithms, such as particle filters, are based on sequential Bayesian inference. This enables the algorithms to make best use of whatever information is available - such as measurements of position and speed, but also additional attributes such as colour. Such established algorithms can, at least in theory, cater with, for example, different individual sensors having different update rates, communication delays causing measurements to arrive out of order, sensor misalignments, systematic biases and using attributes to distinguish multiple objects tracks. As well as addressing these challenges, novel extensions to such algorithms will need to be developed to support the development of a cognitive capability. The studentship is therefore likely to draw on recent developments such as Sequential Monte Carlo (SMC) samplers; approximations commonly used in the context of Bayesian Networks, such as Structured Mean Field, Belief Propagation and Kikuchi approximations.The PhD aims to develop these methods and to demonstrate performance in the context of a combination of inputs from multiple passive, active sensors and/or multi-function sensors. The objective is to enhance the accuracy and robustness of target tracking by both using advanced methods for processing the data but also by adapting the operation of the individual sensors such that they work synergistically to provide a cognitive capability.
列奥纳多制造有源传感器和无源传感器,用于例如空中平台(例如F16和无人机)。有源传感器,如雷达,可以提供准确的范围信息,但发射辐射这样做,降低了感知的程度可以是隐蔽的。相反,被动传感器,如相机,不以相同的方式发射辐射,但不容易配置为提供范围信息。这个学生奖学金涉及融合来自这些传感器的信息,以最大限度地提高整体系统性能和传感的隐蔽性。传统上,来自这些传感器的信息在高度抽象的层次上进行组合。然而,随着通信带宽和处理能力的不断提高,可以考虑在较低的抽象级别上融合数据。这应该允许一种认知方法来融合信息,使得传感器的操作能够实时地进行调整,以显式地最大化性能和隐蔽性:例如,雷达最初可能用于推断物体的范围,但随后可能会使用相机来保持对物体的跟踪。这样的认知能力,预计将提高目标跟踪的保真度和准确性,特别是。高性能的目标跟踪算法,如粒子滤波器,是基于顺序贝叶斯推理。这使得算法能够充分利用任何可用的信息-例如位置和速度的测量,以及颜色等其他属性。这样建立的算法至少在理论上可以迎合例如具有不同更新速率的不同个体传感器、导致测量无序到达的通信延迟、传感器未对准、系统偏差以及使用属性来区分多个对象轨迹。以及解决这些挑战,新的扩展,这样的算法将需要开发,以支持认知能力的发展。因此,该奖学金可能会借鉴最近的发展,如顺序蒙特卡罗(SMC)采样器;近似通常用于贝叶斯网络的上下文中,如结构化平均场,置信传播和菊池approximations.The博士旨在开发这些方法,并在多个被动,主动传感器和/或多功能传感器的输入组合的情况下演示性能。我们的目标是提高目标跟踪的准确性和鲁棒性,通过使用先进的方法来处理数据,但也通过调整各个传感器的操作,使它们协同工作,以提供认知能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
应用Target-Seq技术对肉牛生长性状显著关联基因组区域进行精细定位
- 批准号:31402039
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NSERC/General Dynamics Mission Systems-Canada Industrial Research Chair in Target Tracking and Information Fusion
NSERC/通用动力任务系统-加拿大目标跟踪和信息融合工业研究主席
- 批准号:
521710-2016 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Industrial Research Chairs
Wide area multi-target tracking over multiband imaging sensor networks for military applications
用于军事应用的多波段成像传感器网络的广域多目标跟踪
- 批准号:
2247905 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
I-Corps: Neuromorphic Target Tracking and Control for Insect-Scale Aerial Vehicles
I-Corps:昆虫级飞行器的神经形态目标跟踪和控制
- 批准号:
1838470 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Small: Robust motion planning for multirobot target tracking
RI:小型:用于多机器人目标跟踪的鲁棒运动规划
- 批准号:
1816343 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
EAGER - Integrating machine learning on autonomous platforms for target-tracking operations using stereo imagery
EAGER - 将机器学习集成到自主平台上,使用立体图像进行目标跟踪操作
- 批准号:
1812535 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
NSERC/General Dynamics Mission Systems-Canada Industrial Research Chair in Target Tracking and Information Fusion
NSERC/通用动力任务系统-加拿大目标跟踪和信息融合工业研究主席
- 批准号:
521710-2016 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Industrial Research Chairs
NSERC/General Dynamics Mission Systems-Canada Industrial Research Chair in Target Tracking and Information Fusion
NSERC/通用动力任务系统-加拿大目标跟踪和信息融合工业研究主席
- 批准号:
521710-2016 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Industrial Research Chairs
Large-scale multi-target tracking problem to identify massive people flow in urban area
识别城市地区大量人流的大规模多目标跟踪问题
- 批准号:
15K12462 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Ground target tracking (attitude control) system for next generation greenhouse gas monitoring nanosatellite demonstrator
用于下一代温室气体监测纳米卫星演示器的地面目标跟踪(姿态控制)系统
- 批准号:
461504-2013 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants
I-Corps: Infrastructure-free Security Monitoring and Tracking for Wireless Target (iSMoWT)
I-Corps:无基础设施的无线目标安全监控和跟踪 (iSMoWT)
- 批准号:
1444469 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant