PhD: Real-time nanoscale imaging in live cells - High Speed Single Molecule Localisation Microscopy

博士:活细胞中的实时纳米级成像 - 高速单分子定位显微镜

基本信息

  • 批准号:
    2116111
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Background: Single-molecule based super-resolution microscopy is a recently developed family of optical imaging techniques that allow for imaging at spatial scales far smaller than the diffraction limit (~250 nm). These techniques have seen a great deal of success in recent years, particularly in investigating important biological questions (Nobel Prize Chemistry 2014). The basis of these techniques relies on gaining higher spatial resolution by trading off temporal information, therefore they remain relatively slow. Although whole-cell imaging has been achieved to ~20 nm resolution, this can typically take 10s of minutes and is clearly not compatible with a dynamic living systems. Aims: This project will aim to overcome the limitations of low-speed single-molecule based super-resolution microscopy for dynamic living systems by developing a novel high-speed Single-Molecule Localisation Microscope (hsSMLM). The primary aim of the PhD will be to develop both the physical microscope used for hsSMLM and the data analysis techniques necessary to extract the fluorescence signal from the background when imaging at high speed. Methodology: This work will build upon existing SMLM techniques, substituting the high sensitivity cameras used in existing microscopes for a lower sensitivity high speed camera. Our initial goal is to achieve real-time (~25 Hz) cellular imaging with 50 nm resolution. Once this is achieved, there is further potential to transfer established techniques in traditional SMLM to hsSMLM versions, such as 3D Double helix point spread function imaging[1] spectrally resolved[2,3] and polarisation resolved[4] super-resolution microscopy to enable novel biological investigations.This project will deliver multidisciplinary training where the student will develop skills in photonics, biology, microscopy, signal processing and novel probe development. This project allows for both method-led and application-led development, providing the best possible opportunity for an engaging and highly successful PhD.Application: Once developed, a new frontier of numerous biological questions will be accessible. The primary biological interests pertain to human health and include:(1) real-time imaging and direct visualisation of synaptic transmission in human induced pluripotent stem cell derived cortical neurons, important in neurodegenerative conditions such as Alzheimer's and Parkinson's disease. Synaptic transmission occurs across time scales of milliseconds and length scales of nanometres, and as such have never been imaged. hsSMLM would enable the first direct observation of this established mechanism.(2) The molecular basis of adaptive immunity, in receptor clustering in T cells, important in auto immune diseases such as rheumatoid arthritis. At present whole-cell imaging is extremely lengthy: imaging a T cell with 22 nm isotropic resolution currently takes ~4 hours. hsSMLM would reduce this to less than a second. Industrial Engagement: The project will involve a collaboration with Dr Owen Richards, an applications scientist at the microscopy company and industrial partner 3i. 3i have an excellent track-record in both licencing and commercialising academic discoveries.
背景:基于单分子的超分辨率显微镜是最近发展起来的一种光学成像技术,它允许在远小于衍射极限(~250 nm)的空间尺度上成像。近年来,这些技术取得了巨大的成功,特别是在研究重要的生物学问题(2014年诺贝尔化学奖)。这些技术的基础依赖于通过交换时间信息来获得更高的空间分辨率,因此它们仍然相对较慢。虽然全细胞成像已经达到了~ 20nm的分辨率,但这通常需要10分钟,并且显然与动态生命系统不兼容。目的:本项目旨在通过开发一种新型高速单分子定位显微镜(hsSMLM)来克服低速单分子超分辨率显微镜用于动态生命系统的局限性。博士学位的主要目标是开发用于hsSMLM的物理显微镜,以及在高速成像时从背景中提取荧光信号所需的数据分析技术。方法:这项工作将建立在现有的SMLM技术的基础上,用低灵敏度的高速相机取代现有显微镜中使用的高灵敏度相机。我们最初的目标是实现50纳米分辨率的实时(~25赫兹)细胞成像。一旦实现了这一点,就有进一步的潜力将传统SMLM中的既定技术转移到hsSMLM版本,例如3D双螺旋点扩展函数成像[1]光谱分辨率[2,3]和偏振分辨率[4]超分辨率显微镜,以实现新的生物研究。该项目将提供多学科培训,培养学生在光子学、生物学、显微镜学、信号处理和新型探针开发方面的技能。这个项目允许以方法为主导和以应用为主导的发展,为一个有吸引力和非常成功的博士提供最好的机会。应用:一旦开发成功,许多生物学问题将进入一个新的前沿。主要的生物学兴趣与人类健康有关,包括:(1)人类诱导多能干细胞衍生的皮质神经元突触传递的实时成像和直接可视化,这在阿尔茨海默病和帕金森病等神经退行性疾病中很重要。突触传输发生在毫秒级的时间尺度和纳米级的长度尺度上,因此从未被成像。hsSMLM将能够第一次直接观察这一已建立的机制。(2)适应性免疫的分子基础,在T细胞受体聚集中,在类风湿关节炎等自身免疫性疾病中起重要作用。目前,全细胞成像非常耗时:以22纳米各向同性分辨率成像T细胞目前需要约4小时。hsSMLM将把这个时间缩短到不到1秒。工业参与:该项目将与显微镜公司的应用科学家和工业合作伙伴3i的Owen Richards博士合作。我在授权和商业化学术发现方面都有出色的记录。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
  • 批准号:
    10103131
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
I-Corps: Translation Potential of Simultaneous Musculoskeletal Assessment with Real-Time Ultrasound
I-Corps:实时超声同步肌肉骨骼评估的转化潜力
  • 批准号:
    2413735
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了