Bridging single cell and population dynamics

连接单细胞和群体动态

基本信息

项目摘要

DESCRIPTION (provided by applicant): The goals of this study are to measure how the dynamics of individual neurons and synapses contribute to synchronous oscillatory activity in populations of neurons, and to understand how the neuromodulator acetylcholine changes intracellular and network properties. Experiments will measure the dynamics of neurons in brain slices of the entorhinal cortex (EC) using whole-cell patch-clamp techniques, along with advanced real-time experimental control. The experiments will be supplemented by computational work. This study has four aims: (1) There are at least three distinct neuronal populations in the EC that have distinct electrophysiological properties. It will be tested if these neurons have different mechanisms of synchronization (e.g., excitation- or inhibition-based synchronization) using 'spike time response' (STR) methods from applied mathematics. In STR techniques, neurons are characterized in terms of how spikes in periodically firing neurons are advanced or delayed by artificial synaptic inputs. (2) The neuromodulator acetylcholine (ACh) is known to alter firing properties of neurons in the EC, and change population rhythms in brain slices. Therefore, it is hypothesized that ACh changes cellular intrinsic properties in a manner that supports enhanced synchronization. The effect of ACh agonists on neurons will be studied using STR measurements. (3) STR methods can be used to predict how small neuronal networks will synchronize. This hypothesis will be directly measured by using real-time control system to construct "hybrid" networks of coupled biological neurons and computer-modeled counterparts. (4) Network activity becomes complicated with increasing number and types of neurons and types of neurons. Models from STR based model networks can predict the behavior of large networks. Modeling can be used to understand networks with multiple cellular components and more complex patterns of synaptic coupling.
描述(由申请人提供):本研究的目标是测量单个神经元和突触的动态如何促进神经元群体的同步振荡活动,并了解神经调节剂乙酰胆碱如何改变细胞内和网络特性。实验将使用全细胞膜片钳技术,以及先进的实时实验控制,测量内嗅皮层(EC)脑切片中神经元的动态。这些实验将辅以计算工作。本研究有四个目的:(1)EC中至少有三个不同的神经元群,它们具有不同的电生理特性。将使用应用数学中的“尖峰时间响应”(STR)方法测试这些神经元是否具有不同的同步机制(例如,基于激励或抑制的同步)。在STR技术中,神经元的特征在于周期性放电神经元的尖峰如何被人工突触输入提前或延迟。(2)已知神经调节剂乙酰胆碱(ACh)可以改变EC中神经元的放电特性,并改变脑切片中的种群节律。因此,假设乙酰胆碱以支持增强同步的方式改变细胞的内在特性。乙酰胆碱激动剂对神经元的影响将通过STR测量来研究。(3) STR方法可用于预测小神经元网络将如何同步。这一假设将通过使用实时控制系统来构建耦合生物神经元和计算机模拟对应的“混合”网络来直接测量。(4)随着神经元数量和类型的增加以及神经元类型的增加,网络活动变得复杂。基于STR的模型网络模型可以预测大型网络的行为。建模可以用来理解具有多个细胞组件和更复杂的突触耦合模式的网络。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

THEODEN I NETOFF其他文献

THEODEN I NETOFF的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('THEODEN I NETOFF', 18)}}的其他基金

Flexible normalization in ferret V1: computational modeling and 2-photon imaging
雪貂 V1 中的灵活归一化:计算建模和 2 光子成像
  • 批准号:
    10299683
  • 财政年份:
    2021
  • 资助金额:
    $ 4.64万
  • 项目类别:
Minnesota Neuroimaging Postdoctoral Training Grant
明尼苏达州神经影像博士后培训补助金
  • 批准号:
    10418706
  • 财政年份:
    2021
  • 资助金额:
    $ 4.64万
  • 项目类别:
Flexible normalization in ferret V1: computational modeling and 2-photon imaging
雪貂 V1 中的灵活归一化:计算建模和 2 光子成像
  • 批准号:
    10661584
  • 财政年份:
    2021
  • 资助金额:
    $ 4.64万
  • 项目类别:
Minnesota Neuroimaging Postdoctoral Training Grant
明尼苏达州神经影像博士后培训补助金
  • 批准号:
    10205698
  • 财政年份:
    2021
  • 资助金额:
    $ 4.64万
  • 项目类别:
Flexible normalization in ferret V1: computational modeling and 2-photon imaging
雪貂 V1 中的灵活归一化:计算建模和 2 光子成像
  • 批准号:
    10458003
  • 财政年份:
    2021
  • 资助金额:
    $ 4.64万
  • 项目类别:
Minnesota Neuroimaging Postdoctoral Training Grant
明尼苏达州神经影像博士后培训补助金
  • 批准号:
    10671067
  • 财政年份:
    2021
  • 资助金额:
    $ 4.64万
  • 项目类别:
ISPW8 Conference: Designing the next generation of closed loop seizure control
ISPW8 会议:设计下一代闭环癫痫控制
  • 批准号:
    9398788
  • 财政年份:
    2017
  • 资助金额:
    $ 4.64万
  • 项目类别:
Bridging single cell and population dynamics
连接单细胞和群体动态
  • 批准号:
    6816966
  • 财政年份:
    2003
  • 资助金额:
    $ 4.64万
  • 项目类别:
DEFECTING GENERALIZED SYNCHRONY OF CELLS IN HIPPOCAMPUS
海马体细胞的广义同步性缺陷
  • 批准号:
    2867670
  • 财政年份:
    1999
  • 资助金额:
    $ 4.64万
  • 项目类别:
DETECTING GENERALIZED SYNCHRONY OF CELLS IN HIPPOCAMPUS
检测海马细胞的广义同步性
  • 批准号:
    2890101
  • 财政年份:
    1999
  • 资助金额:
    $ 4.64万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 4.64万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 4.64万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 4.64万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 4.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 4.64万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 4.64万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 4.64万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 4.64万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 4.64万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 4.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了