Splash: Understanding the Dynamics of High-Speed Drop Impact

Splash:了解高速跌落冲击的动力学

基本信息

  • 批准号:
    2118171
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The dynamics of capillary-driven free surface flows, together with turbulent behaviour are, arguably, some of the most challenging topics in fluid dynamics. They involve complex flows evolving across several length and time scales. The dynamic fluid processes involved during drop formation and disintegration are fascinating but extremely complicated, with time-dependent fluid interface disruptions. A drop impacting on to a surface (solid, liquid, or granular) can lead to simple spreading, bouncing, or splashing. The resulting dynamics depends not only on the liquid properties and speed of the drop, but on a variety of other parameters, such as the surface's roughness, stiffness, chemistry, and temperature, and surrounding conditions. While in some industrial applications splashing is desired (e.g. cooling and combustion), it is to be avoided at all cost in others (e.g. inkjet printing or in the prevention of the spreading of infectious diseases as the Covid-19 pandemic has shown). For my research, I am currently using advanced mathematical techniques combined with state-of-the-art computational power, and technological advances in experimental imaging techniques, which allow me to observe and model the dynamics in unprecedented detail and at unprecedented speeds.Splashing is one of the most fascinating, albeit challenging, topics in the field of drops. However, the exact mechanisms triggering a splash have remained elusive. With the help of cutting-edge ultrahigh speed photography, modern ultrahigh resolution numerical simulations and asymptotic theory the main objective of the proposed research is to reveal the dynamics underlying and triggering a splash. In particular, we aim at: 1- Identifying the parameters leading to a splash in when a droplet impacts a pool of miscible and immiscible fluids. This includes developing models capable of resolving three phase flows under these violent conditions.2- Reveal the (vertical) speed of the contact line (drop/pool) upon impact. Preliminary results demonstrate that a complex relationship between the ratio of densities and viscosities between the liquids of the drop and the pool play an important role here.3- Understand the contributions due to pure viscous and viscoelastic effects of both the drop and target. 4- Explore the influence that the curvature of the target has on the resulting dynamics.5- Based on the above, explore techniques to suppress splashing. The first part (1 and 2) of this this research has already been performed carrying out a series of systematic experiments of the impact of drops onto (immiscible) substrates of varying viscosity. Volume of Fluid simulations are currently being carried out which are providing detail not available from experiments (e.g. internal velocity fields) to enable greater understanding of the underlying dynamics and how this can lead to splashing. Whilst the aforementioned area of research is largely concerned with the motion of the droplet in the case of liquid on liquid impact the motion of the pool itself is also one of great interest but is often overlooked, especially in the early times upon impact. Whilst some models exist for the pool motion, these are largely limited to when the droplet and pool fluid are the same fluid and are often used when they are often not appropriate. For this reason, another area to be researched is the motion of the pool both before and after impact and how this pool motion is affected by the relevant fluid properties and how this pool motion can affect splashing. These objectives are major undertakings, and a close collaboration with Dr. R. Cimpeanu at the University of Warwick.The proposed research falls within the EPSRC areas of Fluid Dynamics and Aerodynamics, Complex Fluids and Rheology, as well as Manufacturing the Future for the importance identified above in industrial applications such as inkjet printing.
毛细管驱动的自由表面流动的动力学,以及湍流行为,可以说,在流体动力学中最具挑战性的课题。它们涉及跨越几个长度和时间尺度的复杂流动。液滴形成和解体过程中涉及的动态流体过程是迷人的,但极其复杂,与时间相关的流体界面中断。撞击到表面(固体、液体或颗粒)上的液滴可导致简单的扩散、弹跳或飞溅。由此产生的动力学不仅取决于液体的性质和液滴的速度,而且还取决于各种其他参数,例如表面的粗糙度、硬度、化学性质和温度以及周围条件。虽然在某些工业应用中需要飞溅(例如冷却和燃烧),但在其他工业应用中应不惜一切代价避免飞溅(例如喷墨打印或预防传染病传播,如Covid-19大流行所示))。在我的研究中,我目前正在使用先进的数学技术,结合最先进的计算能力,以及实验成像技术的技术进步,这使我能够以前所未有的细节和前所未有的速度观察和建模动态。飞溅是水滴领域最迷人的,尽管具有挑战性的主题之一。然而,触发飞溅的确切机制仍然难以捉摸。借助尖端的高速摄影、现代高分辨率数值模拟和渐近理论,拟议研究的主要目标是揭示飞溅背后的动力学和触发飞溅的动力学。特别是,我们的目标是:1-确定的参数导致飞溅时,液滴的影响池的可混溶和不可混溶的流体。这包括开发能够在这些剧烈条件下解析三相流的模型。2-揭示撞击时接触线(液滴/液池)的(垂直)速度。初步结果表明,一个复杂的关系之间的比率的密度和粘度之间的液体的下降和池在这里起着重要的作用。3-理解的贡献,由于纯粘性和粘弹性的影响的下降和目标。4-探索目标的曲率对所产生的动力学的影响。5-基于上述内容,探索抑制飞溅的技术。本研究的第一部分(1和2)已经进行了一系列系统的实验,对液滴在不同粘度的(不混溶的)基质上的影响进行了研究。目前正在进行流体体积模拟,这些模拟提供了实验中无法获得的细节(例如内部速度场),以更好地了解潜在的动力学以及如何导致飞溅。虽然上述研究领域主要涉及在液体对液体冲击的情况下液滴的运动,但池本身的运动也是非常感兴趣的,但经常被忽视,特别是在冲击的早期。虽然存在用于池运动的一些模型,但这些模型在很大程度上限于液滴和池流体是相同流体时,并且通常在它们通常不合适时使用。因此,另一个需要研究的领域是撞击前后水池的运动,以及水池运动如何受到相关流体特性的影响,以及水池运动如何影响飞溅。这些目标是主要的事业,并与R博士密切合作。这项研究福尔斯EPSRC的流体动力学和空气动力学、复杂流体和流变学以及制造未来的领域,因为在喷墨打印等工业应用中,上述研究具有重要意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NSF Postdoctoral Fellowship in Biology: Understanding the role of dietary toxins in shaping microbial community dynamics in the gut
NSF 生物学博士后奖学金:了解膳食毒素在塑造肠道微生物群落动态中的作用
  • 批准号:
    2305735
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Toward a more complete understanding of coastal upwelling dynamics
更全面地了解沿海上升流动力学
  • 批准号:
    2343008
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
  • 批准号:
    EP/X042812/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Fluid Dynamics - understanding fluid dynamics to improve our lives
流体动力学 - 了解流体动力学以改善我们的生活
  • 批准号:
    2882596
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Postdoctoral Fellowship: AAPF: All Shook Up: Understanding the Chemistry, Dynamics, and Kinematics of the Diffuse Interstellar Medium
博士后奖学金:AAPF:一切都震惊了:了解弥漫星际介质的化学、动力学和运动学
  • 批准号:
    2303902
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了