`Positivity Bounds in Effective Field Theories of Gravity'
“有效引力场论的积极界限”
基本信息
- 批准号:2119407
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will explore the very recent theoretical developments in effective quantum field theories, in which the tools of the S-matrix program of the 1960's have been shown to provide powerful constraints on the consistency of low energy effective field theories, in particular cosmological effective field theories that can describe the inflationary or dark energy phases of expansion of the universe. These constraints arise from the overarching requirements that a consistent Lorentz invariant quantum theory should satisfy unitarity, crossing symmetry, locality and causality. In recent work within the theoretical physics group at Imperial College, these requirements have been shown to impose an infinite number of bounds on the parameters in an effective field theory expansion that can be used to actively constrain candidate theories of gravity and cosmological models. In particular these constraints are already being used to significantly constrain the parameter space of massive gravity theories, which have been considered as candidate theories of gravity at cosmological scales with the potential to tackle the cosmological constant. The project will continue this exploration and put constraints on theories of multiple spin 2 and higher fields.
该项目将探索有效量子场论的最新理论发展,其中20世纪60年代的S矩阵程序的工具已被证明对低能有效场论的一致性提供了强有力的约束,特别是可以描述宇宙膨胀或暗能量膨胀阶段的宇宙学有效场论。这些限制来自于一致的洛伦兹不变量量子理论必须满足么正性、交叉对称性、定域性和因果性的总体要求。在帝国理工学院理论物理小组最近的工作中,这些要求已经被证明在有效场论展开中对参数施加了无限数量的界限,这些界限可以用来积极地约束引力和宇宙学模型的候选理论。特别是这些约束已经被用来显着约束大质量引力理论的参数空间,这已被视为候选理论的引力在宇宙尺度的潜力,以解决宇宙常数。该项目将继续这一探索,并对多自旋2和更高领域的理论提出限制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
CAREER: Lower Bounds for Shallow Circuits
职业生涯:浅层电路的下限
- 批准号:
2338730 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Complexity Lower Bounds from Expansion
扩展带来的复杂性下限
- 批准号:
23K16837 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Non-parametric estimation under covariate shift: From fundamental bounds to efficient algorithms
协变量平移下的非参数估计:从基本界限到高效算法
- 批准号:
2311072 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Tighter error bounds for representation learning and lifelong learning
表征学习和终身学习的更严格的误差范围
- 批准号:
RGPIN-2018-03942 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
AF: Small: New Techniques for Optimal Bounds on MCMC Algorithms
AF:小:MCMC 算法最优边界的新技术
- 批准号:
2147094 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
- 批准号:
RGPIN-2019-05543 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Extremal Combinatorics Exact Bounds
极值组合精确界
- 批准号:
574168-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Lower bounds on ranks of nontrivial toric vector bundles
非平凡环面向量丛的秩下界
- 批准号:
558713-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Bringing upper and lower bounds closer in computational geometry
使计算几何中的上限和下限更加接近
- 批准号:
567959-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral