Artificial Intelligence based multi-objective optimisation for energy management in dynamic flexible manufacturing systems

基于人工智能的动态柔性制造系统能源管理多目标优化

基本信息

  • 批准号:
    2125600
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The main goal of this project is to address the multi-objective dynamic flexible job shop scheduling problem for reducing energy consumption and its related costs. The project aims to develop a system that employs composite dispatching rules that include reduction of energy consumption as its main objective. It is intended that such a system could be implemented in a flexible production system in which job scheduling occurs at random or unpredictable times. The proposed dispatching rule would prioritise all the jobs waiting for processing on a machine in the manufacturing system while taking into account different attributes of the job and the machine, as well as time. The manufacturing industry currently faces the dual challenge of increasing energy prices, and regulatory mandates intended to reduce carbon emissions, which can prove problematic for many enterprises. It is becoming increasingly necessary to explore the potential of reducing energy consumption of industrial manufacturing at a system level, which has so far been largely ignored. At this level, operational research methods can be employed as an effective energy-saving approach. In the future, the requirement on manufacturing system flexibility within the system will be increased to realise mass customisation and personalisation. On-line decision making and optimisation techniques to accommodate these uncertainties and to maintain robustness of the flexible manufacturing system is becoming increasingly important within the background of industry 4.0. The application of multi-objective algorithms shows a great deal of promise at addressing the issues faced by the manufacturing industry. By producing fast and elitist multi-objective scheduling algorithms, it will be possible to optimise a number of factors, such as cost, energy consumption and lead time. These optimisations will go a long way in improving the current state of manufacturing, both by reducing environmental footprint and by reducing financial overheads.A great deal of research has been conducted into the development of elitist heuristics and evolutionary algorithms, and their operation is well understood. Existing dynamic scheduling algorithms will be extended to address the uncertainties within the manufacturing system as a benchmark. By targeting the practical shortcomings of these algorithms, it will be possible to develop a system which avoids these problems, most notably: the high computational complexity of the sorting.A large part of the project will focus on expanding the past research into multi-objective optimization problems and evolutionary algorithms. By developing understanding of the function of jobs within the manufacturing environment, and the implementation mathematical modelling of the job shop scheduling process. A focus on fast computation and implementation will be the heart of this research, in order to maximise the applicability of the scheduling algorithms to a modern manufacturing environment. In the context of a manufacturing environment, swift computation is of paramount importance.This project can be seen as a continuation of the research conducted by Dr. Ying Liu into the field of meta-heuristics and industrial job scheduling. As such, much of Dr. Liu's research will be examined, with the final intention of expanding it into an industry application."
本课题的主要目标是解决多目标动态柔性作业车间调度问题,以降低能源消耗及其相关成本。该项目旨在开发一个采用综合调度规则的系统,其中包括以降低能源消耗为主要目标。本发明的目的是在作业调度在随机或不可预测的时间发生的灵活生产系统中实现这种系统。拟议的调度规则将优先处理制造系统中机器上等待处理的所有作业,同时考虑作业和机器的不同属性以及时间。制造业目前面临着能源价格上涨和旨在减少碳排放的监管命令的双重挑战,这对许多企业来说可能是个问题。越来越有必要探索在系统层面上降低工业制造能耗的潜力,这一点到目前为止在很大程度上被忽视了。在这个层面上,运筹学方法可以作为一种有效的节能方法。未来,将提高系统内制造系统灵活性的要求,以实现大规模定制和个性化。在工业4.0的背景下,在线决策和优化技术以适应这些不确定性并保持柔性制造系统的健壮性正变得越来越重要。多目标算法的应用在解决制造业面临的问题方面显示出很大的前景。通过产生快速和精英的多目标调度算法,将有可能优化一些因素,如成本、能源消耗和交货期。这些优化将通过减少环境足迹和减少财务管理费用,在改善制造业现状方面大有裨益。人们对精英启发式算法和进化算法的发展进行了大量研究,它们的运作是众所周知的。现有的动态调度算法将被扩展,以解决制造系统中的不确定性作为基准。通过针对这些算法的实际缺点,将有可能开发出一个系统来避免这些问题,最显著的是:排序的计算复杂性。该项目的很大一部分将专注于将过去的研究扩展到多目标优化问题和进化算法。通过发展对制造环境中作业的功能的理解,以及实现作业车间调度过程的数学模型。为了最大限度地提高调度算法在现代制造环境中的适用性,对快速计算和实施的关注将是本研究的核心。在制造环境中,快速计算是至关重要的。该项目可以被视为刘莹博士对元启发式算法和工业作业调度领域研究的继续。因此,刘博士的大部分研究都将得到检验,最终目的是将其扩展到行业应用中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
  • 批准号:
    2405662
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: A web portal for artificial intelligence (AI)-based comprehensive discovery of repositioning drugs
SBIR 第一阶段:基于人工智能 (AI) 的重新定位药物综合发现门户网站
  • 批准号:
    2334510
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: VoxCare: Artificial Intelligence-based Monitoring for Substance Use Indicators in Youth
SBIR 第一阶段:VoxCare:基于人工智能的青少年药物使用指标监测
  • 批准号:
    2335605
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
AI4HOPE: ARTIFICIAL INTELLIGENCE BASED HEALTH, OPTIMISM, PURPOSE, AND ENDURANCE IN PALLIATIVE CARE FOR DEMENTIA
AI4HOPE:基于人工智能的痴呆症姑息治疗中的健康、乐观、目标和耐力
  • 批准号:
    10103129
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Utilising alternative data to develop a machine learning-based artificial intelligence platform for real-time KPI tracking of UK companies for fundamental investors
利用另类数据开发基于机器学习的人工智能平台,为基本面投资者实时跟踪英国公司的 KPI
  • 批准号:
    10057969
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
NIMBLE - an artificial intelligence-based early warning system for bladder cancer
NIMBLE——基于人工智能的膀胱癌早期预警系统
  • 批准号:
    486937
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Miscellaneous Programs
Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
  • 批准号:
    486956
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
I-Corps: Privacy-Responsive Artificial Intelligence-Based Solution for Smart Video Surveillance
I-Corps:基于隐私敏感的人工智能的智能视频监控解决方案
  • 批准号:
    2323757
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Identification of the origins of inherited retinal diseases and clarification of genotype-phenotype correlations based on three major ethnic groups worldwide utilizing artificial intelligence.
利用人工智能,基于全球三个主要种族群体,识别遗传性视网膜疾病的起源并阐明基因型-表型相关性。
  • 批准号:
    22KJ2665
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了