Developing interferometers to detect electric field signals with very high sensitivity

开发干涉仪以非常高的灵敏度检测电场信号

基本信息

  • 批准号:
    2126335
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The project is about developing interferometers to detect electric field signals with very highsensitivity, beyond that enabled by classical mechanics. Specifically, it aims at increasing thesensitivity of time-resolved infrared and terahertz field measurements.Enhancement of interferometry in the past years has led to fundamental discoveries in numerousfields, and this particular project can reveal new and revolutionary interactions to help uswiden our scope of reality and understand the nature of the universe a little better. The sensitivity ofinterferometers can be boosted and overcome the standard-quantum limits by using entangledphotons or squeezed states. This was indeed one of the breakthroughs of the last 30 years ofresearch. One of the most remarkable examples of this possibility is described in the seminal work of Carlton Caves: "Quantum-mechanical noise in an interferometer" published in Physical Review D, 23,1693 (1981).We are currently limited to visible and near-infrared frequencies, and this project will be about usingthese quantum states to increase the sensitivity of low-frequency radiation, in the infrared and THzpart of the spectrum. Delving into this largely unexplored part of the spectrum will provide excitingresearch challenges, on top of potentially relevant technological outcomes. At terahertz frequency,unusual light-matter interactions can be observed, such as non-perturbative effects of carrierstunnelling, which complements some intriguing applications including security and quality control.The project goal is that of increasing the sensitivity of infrared and THz detectors using quantumstates of light. The primary approach for infrared sensing that will be investigated is known as timedomainspectroscopy. This is a detection technique that involves short laser pulses, in the order offew tens of femtoseconds, which sample in time the unknown infrared radiation thanks to anonlinear process called electro-optical effect that occurs in certain nonlinear crystals. A detailedaccount of this technique can be found in "Introduction to THz Wave Photonics", by X.-C. Zhang andJingzhou Xu (Springer 2009). More up to date research papers will complement this background.The project aims at improving this approach by applying the recently developed quantum metrologytechniques. The starting point to understand why a quantum state can help to improve thesensitivity of a measurement is described in several textbooks, such as "Introduction to QuantumOptics", by G. Grynberg, A. Aspect, and C. Fabre (Cambridge University Press, 2010).The time-domain spectroscopy is, in essence, a pulsed interferometer. To enhance its sensitivityabove the standard quantum limit squeezed states will be injected into the open port of theinterferometer, following the original Caves' proposal. Such nonclassical state can be generated byamplifying the vacuum fluctuations in a parametric amplifier pumped by femtosecond optical pulses.Reference textbooks that are relevant to this background on nonlinear light-matter interaction areUltrashort Laser Pulse Phenomena, by J.-C. Diels and W. Rudolph (Academic Press, 2006) andNonlinear Optics, by R. Boyd (Academic Press, 2008).Overall, the project aims at developing new, table-top technologies to improve the sensitivity ofeffects that occur at the femtosecond and picosecond time scales. The implications of developing Electronics and Nanoscale Engineering Research Proposalthis technology and advancing the field of photonics are massive, and as a result, there are a numberof topics which branch off from this field which provide numerous promising technological andindustrial ventures which could revolutionise modern day society if they were to come to fruition.For instance, other time-varying effects could be investigated, such as those associated with weakmagnetic fields, or perturbations of the local gravity.
该项目是关于开发干涉仪,以非常高的灵敏度探测电场信号,超越经典力学。具体来说,它旨在提高时间分辨红外和太赫兹场测量的灵敏度。在过去的几年里,干涉测量的增强已经在许多领域带来了根本性的发现,这个特殊的项目可以揭示新的和革命性的相互作用,帮助我们扩大我们的现实范围,更好地理解宇宙的本质。通过使用纠缠光子或压缩态,可以提高干涉仪的灵敏度,并克服标准量子的限制。这确实是过去30年研究的突破之一。Carlton Caves的开创性著作《干涉仪中的量子力学噪声》描述了这种可能性的一个最显著的例子:发表在《物理评论D》1693(1981)第23期。我们目前仅限于可见光和近红外频率,这个项目将是关于使用这些量子态来增加低频辐射的灵敏度,在光谱的红外和太赫兹部分。除了潜在的相关技术成果之外,深入研究这一大部分未开发的频谱部分将提供令人兴奋的研究挑战。在太赫兹频率下,可以观察到不寻常的光-物质相互作用,例如载流子猝灭的非扰动效应,这补充了一些有趣的应用,包括安全和质量控制。该项目的目标是利用光的量子态来提高红外和太赫兹探测器的灵敏度。将要研究的红外传感的主要方法被称为时域光谱学。这是一种检测技术,涉及到几十飞秒的短激光脉冲,由于某些非线性晶体中发生的称为电光效应的非线性过程,这些脉冲可以及时采样未知的红外辐射。该技术的详细说明可以在“介绍太赫兹波光子学”中找到,由x.c。张敬洲,徐敬洲(bbb2009)。更多最新的研究论文将补充这一背景。该项目旨在通过应用最新开发的量子计量技术来改进这种方法。理解为什么量子态可以帮助提高测量的灵敏度的起点是在几本教科书中描述的,如“量子光学导论”,由G. Grynberg, a . Aspect和C. Fabre(剑桥大学出版社,2010)。时域光谱学实质上是一种脉冲干涉仪。为了将其灵敏度提高到标准量子极限以上,将按照Caves最初的建议将压缩态注入干涉仪的开放端口。这种非经典态可以通过放大飞秒光脉冲泵浦的参数放大器中的真空波动来产生。与非线性光-物质相互作用背景相关的参考教科书是j.c。Diels和W. Rudolph(学术出版社,2006)和非线性光学,R. Boyd(学术出版社,2008)。总的来说,该项目旨在开发新的桌面技术,以提高在飞秒和皮秒时间尺度上发生的灵敏度效应。发展电子和纳米工程研究计划的意义是巨大的,这项技术和推进光子学领域是巨大的,因此,有许多主题从这个领域分支出来,提供了许多有前途的技术和工业企业,如果它们结出果实,可能会彻底改变现代社会。例如,可以研究其他时变效应,例如与弱磁场或局部重力扰动有关的效应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Novel x-ray interferometers for length metrology
用于长度计量的新型 X 射线干涉仪
  • 批准号:
    2880824
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of efficient algorithms using nonconvex nonsmooth optimization problem structure and their application to radio interferometers
使用非凸非光滑优化问题结构开发高效算法及其在无线电干涉仪中的应用
  • 批准号:
    23K19953
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Performance verification of densified pupil interferometry on formation flight simulator Pyxis toward space infrared interferometers
编队飞行模拟器Pyxis上的致密光瞳干涉仪对空间红外干涉仪的性能验证
  • 批准号:
    23KK0059
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Matter-Wave Interferometers
物质波干涉仪
  • 批准号:
    EP/X030369/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Direct detection of ultra-light dark matter using novel atom interferometers (AION/MAGIS)
使用新型原子干涉仪(AION/MAGIS)直接探测超轻暗物质
  • 批准号:
    2745962
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Coatings for Next Generation Gravitational Wave Interferometers
下一代引力波干涉仪涂层
  • 批准号:
    2110101
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Human Brain Interferometers for Better Blood Flow Monitoring
人脑干涉仪可更好地监测血流
  • 批准号:
    10392516
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Lightweight wireless phase synchronization techniques for next-generation extremely large microwave interferometers
用于下一代超大微波干涉仪的轻型无线相位同步技术
  • 批准号:
    21K14352
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Human Brain Interferometers for Better Blood Flow Monitoring
人脑干涉仪可更好地监测血流
  • 批准号:
    10359454
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Probing New Physics at the Large Hadron Collider and Gravitational Wave Interferometers
在大型强子对撞机和引力波干涉仪上探索新物理
  • 批准号:
    2112680
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了