Sustainable Production of Marine Cyanobacterial Products (Sus-C-Products): discovery, scale up and maintenance

海洋蓝藻产品(Sus-C-产品)的可持续生产:发现、扩大规模和维护

基本信息

  • 批准号:
    2127817
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

There is increasing realization of the biotechnological potential of cyanobacteria as sources of new compounds and as green factories for the bioproduction of industrial feedstocks for a wide range of industries, from bioplastics, pharmaceuticals to high value compounds such as pigments. Unlike conventional microbial discovery and production platforms, cyanobacteria are light dependent, offering novel production methods as well as being an under-explored biodiscovery resource. Advances in molecular biology and in photonics render cyanobacteria much more tractable. Using combinations of specific wavelengths of light, carefully controlled culture conditions coupled with molecular discovery techniques opens up the prospect of a much-enlarged microbial discovery pipeline which may be of use to address pressing problems such as discovery of new antibiotics for use against drug-resistant infections and low carbon manufacturing. To move from discovery to product also requires the ability to scale up production quickly and easily and to ensure that the chemical activity of interest is maintained in cultures at industrial scale. Problems in i) achieving scale up andii) loss of activity in cultures are two major industrial biotech problem areas. We propose to develop a cyanobacterial pipeline for the discovery and production of novel compounds of industrial interest: coupling discovery with production systems that scale well. Compounds isolated from microorganisms and plants provide an unparalleled starting point for new compound and enzyme discovery. Over the past 3 decades more than 70% of antibiotics entering clinical trials have been based on such compounds. Marine cyanobacteria represent a particularly rich and largely untapped source of natural products, for example producing series of valuable bioactives such as dolastatin, jamaicamide, atanapeptin. Cyanobacteria also encode the assembly commercially attractive compounds such as non-proteinogenic amino acids (eg dolamethylleucine, dolaphenvaline) for which current synthetic approaches employed are very costly. Other rare motifs, such as terminal alkynes (with great potential as tools for chemical biology) are also encoded. We will use state-of- the-art combined genomics and metabolomics to mine and discover compounds from cyanobacteria, and mediate their sustainable and green fermentative production. Biosynthetic gene clusters will be selected for their ability to mediate chemically unprecedented transformations. Unusual enzyme activities will be explored both within their associated biosynthetic clusters as well as being excised and developed as tools for biotransformations.3 Rather than using traditional grind and find methods of discovery, we propose a state of the art, genome led approach: specifically we will:1. combine genomic, metabolic and bioactivity analysis to identify biosynthetic gene clusters (BGCs). that encode enzymes with the potential to biosynthesise structural novel natural products with .medicinally useful activities .2. use appropriate combinations of heterologous expression and promotor refactoring within the Wild Type and heterologous host (specifically tailored to each system) to unlock the production of .unusual enzymes and novel natural products .3. natural products will be isolated purified and structurally characterized using cutting edge approached that combine detailed mass spectrometric analysis, genome analysis and 1 and 2DNMR experiments (this will provide training for the fellow in structural characterization. .4. sustainable, fermentative production of the compounds from both the refactored WT systems and the heterologous host is key. The impact of large scale culturing on strain stability will be assessed using Xanthella's range of culturing systems that allow cultures to be grown under very controlled conditions and at scales ranging from 1l to growth in large scale PBRs at 600L.
越来越多的人认识到蓝藻的生物技术潜力,作为新化合物的来源和绿色工厂的工业原料的生物生产广泛的行业,从生物塑料,制药到高价值的化合物,如颜料。与传统的微生物发现和生产平台不同,蓝藻依赖于光,提供了新的生产方法,也是一种未开发的生物发现资源。分子生物学和光子学的进步使蓝藻更加容易处理。结合特定波长的光,精心控制的培养条件,再加上分子发现技术,开辟了一个大大扩大的微生物发现管道的前景,这可能用于解决紧迫的问题,如发现用于对抗耐药感染和低碳制造的新抗生素。从发现到产品的转变还需要快速轻松地扩大生产规模的能力,并确保在工业规模的培养中保持感兴趣的化学活性。i)实现规模化和i)培养物活性丧失的问题是工业生物技术的两个主要问题领域。我们建议开发一个蓝藻管道的发现和工业利益的新化合物的生产:耦合发现与生产系统的规模好。从微生物和植物中分离的化合物为发现新的化合物和酶提供了一个无与伦比的起点。在过去的30年里,超过70%进入临床试验的抗生素都是基于这类化合物。海洋蓝藻代表了一种特别丰富且大部分未开发的天然产物来源,例如产生一系列有价值的生物活性物质,如多拉司他汀、牙买加酰胺、阿塔那霉素。蓝藻也编码组装具有商业吸引力的化合物,如非蛋白质氨基酸(如聚甲基亮氨酸、聚苯缬氨酸),目前采用的合成方法非常昂贵。其他罕见的基序,如末端炔(具有作为化学生物学工具的巨大潜力)也被编码。我们将使用最先进的基因组学和代谢组学相结合,从蓝藻中挖掘和发现化合物,并介导其可持续和绿色发酵生产。生物合成基因簇将被选择,因为它们有能力介导化学上前所未有的转化。不寻常的酶活性将在其相关的生物合成集群中进行探索,以及作为生物转化的工具进行切除和开发我们提出了一种最先进的、以基因组为主导的方法,而不是使用传统的磨砺和发现方法:1。结合基因组学、代谢和生物活性分析鉴定生物合成基因簇(bgc)。这种基因编码的酶具有生物合成结构新颖的天然产物的潜力。医学上有用的活动。在野生型和异源宿主(专门为每个系统量身定制)中使用异源表达和启动子重构的适当组合来解锁生产。不寻常的酶和新的天然产物。天然产物将被分离纯化,并使用结合详细的质谱分析、基因组分析和1和2DNMR实验的尖端方法进行结构表征(这将为结构表征研究员提供培训)。从重构的WT系统和异源宿主中持续发酵生产化合物是关键。大规模培养对菌株稳定性的影响将使用Xanthella的一系列培养系统进行评估,这些系统允许培养物在非常受控的条件下生长,规模从1l到600L的大规模pbr生长。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Towards Commercial Protein Production through Co-Engineering Marine Microorganisms and Feedstocks for Precision Fermentation
通过联合设计海洋微生物和精密发酵原料实现商业蛋白质生产
  • 批准号:
    10086903
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Collaborative Research: Assessing the role of polyphosphate production and cycling in marine ecosystem functioning.
合作研究:评估聚磷酸盐生产和循环在海洋生态系统功能中的作用。
  • 批准号:
    2245248
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Isolating and optimising salt-tolerant marine microbes for sustainable and clean protein production
分离和优化耐盐海洋微生物以实现可持续和清洁的蛋白质生产
  • 批准号:
    10076364
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
Collaborative Research: Assessing the role of polyphosphate production and cycling in marine ecosystem functioning.
合作研究:评估聚磷酸盐生产和循环在海洋生态系统功能中的作用。
  • 批准号:
    2245249
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Physical and biological controls of primary production in the ice-influenced Canadian Arctic marine system
受冰影响的加拿大北极海洋系统初级生产的物理和生物控制
  • 批准号:
    424231-2019
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
Production, transport, fate and effects of lipids in the marine environment
海洋环境中脂质的产生、运输、归宿和影响
  • 批准号:
    RGPIN-2017-04639
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Biosurfactants as Agents of Marine Oil Spill Response in the North: Production, Mechanism, Effectiveness and Impact
生物表面活性剂作为北方海洋溢油应急响应剂:生产、机制、有效性和影响
  • 批准号:
    RGPIN-2018-05378
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Elucidation of the variation in marine primary production and the land-ocean biogeochemical linkage in North Pacific Ocean
阐明北太平洋海洋初级生产力的变化和陆地-海洋生物地球化学联系
  • 批准号:
    22H01339
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NSF Convergence Accelerator Track J: Accelerating commercial marine fish production in US: developing sustainable feeds, establishing feed suppliers and enhancing market acceptance
NSF 融合加速器轨道 J:加速美国商业性海水鱼类生产:开发可持续饲料、建立饲料供应商并提高市场接受度
  • 批准号:
    2235258
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Mechanistic Study of Extracellular Vesicle Production by Marine Microalgae using Advanced Imaging Technologies
EAGER:利用先进成像技术研究海洋微藻产生细胞外囊泡的机制
  • 批准号:
    2202723
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了