Learning, Innovation, and Explanation in Self-Organising Multi-Agent Systems

自组织多智能体系统的学习、创新和解释

基本信息

  • 批准号:
    2127915
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The initial research proposal focuses on learning, innovation, and explanation in multi-agent systems. Three levels have been identified concerning the design of multi-agent systems: the agent (individual) level, the inter-agent (social) level, and the system level. Previous work has proposed socially-inspired mechanisms to promote collective action and self-organisation at the inter-agent level and GP-based techniques for adaptation and approximate optimisation at the agent and system levels. We would like to explore learning and innovation at all three levels as ways to handle potentially dynamic changes in the environment and ensure sustainability.We note that the methods which can be applied to the agent level, such as reinforcement learning for policy optimisation, are the same sort of methods which can be applied to the system level if we consider the system entity as a control agent. So far, our research has focused on constructing a single system-wide policy by which all agents must abide. However, in a polycentric perspective, the agents should be able to formulate their own policies and plans of action and to participate in the formulation of system policies. This would require mechanisms for combining different sensory experiences and opinions, using communication and knowledge transfer protocols in a collective learning fashion in order to achieve social learning and social innovation.The research question we propose at this stage is: how should individual and collective system policies be formulated and explained so as to sustainably improve and maintain system performance and agent satisfaction, even in dynamic environments? Formulation refers both to the distributed learning algorithms and protocols which enable the agents to construct individual and collective policies and to the way the policies are represented. Explainability refers to the intelligibility of both the learning algorithms which result in the creation of new policies and the policies themselves. Understanding why a policy has been selected and why it is better than other candidate policies which could also have been selected is important for system designers and users to be able to trust its recommendations and gather valuable knowledge regarding the problem domain. Some learning models are inherently intelligible while others are not and it is possible that some unintelligible models can be made understandable, explainable, and interpretable. Intelligible models could shed a new light upon problem domains which are intrinsically hard for humans to understand and lead to the adoption of new and better strategies for searching the theoretically infinite space of sets of rules upon which policies are built. At this stage we have identified the following high-level tasks:- Review previous work on the design of multi-agent systems, focusing on the three levels identified above: the agent, the social, and the system levels- Identify knowledge gaps in previous work, namely regarding polycentric construction of policies and explainability- Write survey paper based on both the literature review and the conclusions about knowledge gaps- Identify possible applications and systems to use as running examples for policy construction and selection- Iteratively propose solutions to three levels of policy construction: single system policy (current work); multiple agent policies; multiple agent policies and a collectively formulated system policyThis project aims at proposing a new paradigm for the design of collective adaptive systems in which system policies are not handcrafted and designers do not hardcode immutable rule sets, but rather the result of automatic construction with the explicit goal of improving system performance and agent satisfaction.EPSRC Research Areas: Control Engineering, Engineering design, Artificial intelligence technologies, Software engineering
最初的研究建议集中在多智能体系统中的学习,创新和解释。关于多智能体系统的设计,已经确定了三个层次:智能体(个体)层次、智能体间(社会)层次和系统层次。以前的工作提出了社会启发的机制,以促进集体行动和自组织在代理间的水平和基于GP的技术,在代理和系统的水平,适应和近似优化。我们希望在这三个层次上探索学习和创新,以应对环境中潜在的动态变化并确保可持续性。我们注意到,如果我们将系统实体视为控制代理,则可以应用于代理层的方法(例如用于政策优化的强化学习)与可以应用于系统层的方法是相同的。到目前为止,我们的研究集中在构建一个单一的系统范围内的政策,所有代理人都必须遵守。然而,从多中心的角度来看,代理人应该能够制定自己的政策和行动计划,并参与制定系统政策。这就需要有一种机制来结合不同的感官体验和意见,以集体学习的方式使用沟通和知识转移协议,以实现社会学习和社会创新。我们在这一阶段提出的研究问题是:应如何制定和解释个人和集体系统政策,以持续改善和保持系统绩效和代理人满意度,即使在动态环境中?制定是指分布式学习算法和协议,使代理构建个人和集体的政策和政策的方式表示。可解释性是指导致创建新策略的学习算法和策略本身的可理解性。理解为什么选择了一个策略,为什么它比其他可能被选择的候选策略更好,对于系统设计者和用户能够信任它的建议并收集关于问题域的有价值的知识是很重要的。一些学习模型本质上是可理解的,而另一些则不是,并且一些不可理解的模型可以变得可理解,可解释和可解释。可理解的模型可以为人类理解本质上难以理解的问题领域提供新的启示,并导致采用新的更好的策略来搜索理论上无限的规则空间,这些规则是建立在政策基础上的。在这个阶段,我们已经确定了以下高层次的任务:-审查以前的工作设计的多代理系统,重点是上述三个层次:代理人,社会和系统层面-确定以前工作中的知识差距,即关于政策的多中心结构和可解释性-根据文献综述和关于知识差距的结论撰写调查报告-确定可能的应用程序和系统,用作策略构建和选择的运行示例-迭代地提出三个级别的策略构建解决方案:单个系统策略(当前工作);多代理策略;多代理策略和集体制定的系统策略本项目旨在提出一个新的范式,设计集体适应系统其中系统策略不是手工制作的,设计人员也不硬编码不可变的规则集,而是自动构建的结果,其明确目标是提高系统性能和代理满意度。EPSRC研究领域:控制工程,工程设计,人工智能技术,软件工程

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Footwear Innovation to Improve Safety for Female Turf Sport Players (“FemFITS”)
鞋类创新可提高女性草地运动运动员的安全性 (“FemFITS”)
  • 批准号:
    10098494
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Innovation through AI
通过人工智能进行创新
  • 批准号:
    10102175
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Yorkshire and the Humber Policy Innovation Partnership
约克郡和汉伯政策创新伙伴关系
  • 批准号:
    ES/Z50239X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
  • 批准号:
    2315247
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
  • 批准号:
    2348836
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ART: Research to Solutions, Building Translational Capacity in the Central Florida Innovation Ecosystem
ART:从研究到解决方案,在佛罗里达州中部创新生态系统中建设转化能力
  • 批准号:
    2331319
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
How the mushroom lost its gills: phylogenomics and population genetics of a morphological innovation in the fungal genus Lentinus
蘑菇如何失去鳃:香菇属真菌形态创新的系统基因组学和群体遗传学
  • 批准号:
    2333266
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
  • 批准号:
    2333683
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
  • 批准号:
    2333684
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
REU Site: Polymer Innovation for a Sustainable Future
REU 网站:聚合物创新打造可持续未来
  • 批准号:
    2348780
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了