Stochastic Averaging and Diffusion Creations for Stochastic Equations.

随机方程的随机平均和扩散创建。

基本信息

  • 批准号:
    2129712
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

We study the evolution of a system in which the observables interact and evolve at different time scales: some of the variables change slowly and the others move faster and oscillate. The aim is to capture the average influence of the fast variable on the slow varying ones and obtain an approximate dynamics for describing the evolution of the slow variable over a long time. The approximate dynamics is known as the effective motion. We study a differential equation in a variable x, driven by a vector eld depending on a fast variable y:x_ = 1$ f(x; y$) where $ is a small number indicating the separation of the scales and the order fo the duration of time. When y is a Markov process satisfying a strong mixing condition with mixing rate at least quadratic and for which certain quantitative ergodic theorems hold, the statistical properties of the family of random variables x$t, which depends smoothly on time, is approximately given by a diffusion process that typically depends on t in a non-differentiable way.This is called diffusion creation, a classical problem which is still and even more relevant today. The aim of the project is to study these type of phenomenon when the fast stochastic process is not Markovian. Dffusion creation has also been studied when the fast variables coming from a deterministic dynamical system which is sufficiently chaotic [2].Novelty and Methodology. We begin with taking the fast variables the solutions of a stochastic differential equation driven by fractional Brownian motions. For such SDEs the existence of the invariant measure and the rate of the convergence have been recently studied. For example, for the additive noise case, the ergodicity was obtained in [1], a rate of convergence is also known, but not suffciently good to t into the standard work, even we were to ignore the problem of that the fast system having memory. See [1]. Subsequent studied were then made on the multiplicative cases. Here we propose to use a method, used to dealing with rough differential equations [2], to hope to by pass the problem that it is extremely difficult to obtain a good rate.This research is in alignment to EPSRC's strategic theme mathematical sciences and research area: Mathematical analysis, Statistics and applied probability.References.[1] M. Hairer. Ergodicity of Stochastic Differential Equations Driven by Fractional Brownian Motion. Ann. Probab. 2005.[2] D. Kelly and I. Melbourne. Smooth approximation of stochastic differential equations Ann. Probab. 2016.[3] I. Chevyrev, P. K. Friz, A. Korepanov, I. Melbourne, and H. Zhang. Multi-scale systems, homogenization, and rough paths. 2017, Arxiv.
我们研究了一个系统的演化,在这个系统中,可观测量在不同的时间尺度上相互作用和演化:一些变量变化缓慢,而另一些变量移动得更快并振荡。其目的是捕捉的平均影响的快变量上的慢变化的,并获得一个近似的动力学描述的慢变量的演变在很长一段时间。近似动力学称为有效运动。本文研究了一个由依赖于快变量y的向量ELD驱动的变量x的微分方程:x_ = 1$ f(x; y$)其中$是一个小数字,表示尺度的分离和持续时间的阶数.当y是一个马尔可夫过程,满足强混合条件,混合率至少是二次的,并且某些定量遍历定理成立时,随机变量族x$t的统计性质,光滑地依赖于时间,近似地由一个扩散过程给出,该扩散过程通常以不可微的方式依赖于t。这称为扩散创建,这是一个经典的问题,在今天仍然是,甚至更加相关。该项目的目的是研究这些类型的现象时,快速随机过程是不是马尔可夫。当快变量来自于一个充分混沌的确定性动力系统时,也研究了混沌的产生[2]。新奇与方法。我们开始采取快速变量的分数布朗运动驱动的随机微分方程的解决方案。对于这样的随机微分方程的不变测度的存在性和收敛速度最近已被研究。例如,对于加性噪声的情形,文献[1]中得到了遍历性,收敛速度也是已知的,但并不能很好地应用到标准工作中,甚至忽略了快速系统具有记忆的问题。参见[1]。然后对乘法情形进行了进一步的研究。在这里,我们提出了一种方法,用于处理粗糙微分方程[2],希望通过的问题,这是非常困难的,以获得良好的率。这项研究是在对齐EPSRC的战略主题数学科学和研究领域:数学分析,统计和应用概率。[1]M.海尔分数布朗运动驱动的随机微分方程的遍历性。安。可能。2005. [2]D.凯莉和我。墨尔本。随机微分方程的光滑逼近。2016. [3]I.谢弗列夫峰Friz,A.科列帕诺夫岛墨尔本和H.张某多尺度系统、均匀化和粗糙路径。2017年,Arxiv。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
  • 批准号:
    2348797
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Ensemble Averaging and the Anti-de Sitter/Conformal Field Theory Correspondence
系综平均和反德西特/共形场论对应
  • 批准号:
    575727-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
In situ in vivo and ex vivo study of the aging human brain: towards creating an MRI and histology brain template averaging 100 cases
衰老人脑的原位体内和离体研究:创建平均 100 个病例的 MRI 和组织学大脑模板
  • 批准号:
    RGPIN-2021-03886
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
In situ in vivo and ex vivo study of the aging human brain: towards creating an MRI and histology brain template averaging 100 cases
衰老人脑的原位体内和离体研究:创建平均 100 个病例的 MRI 和组织学大脑模板
  • 批准号:
    RGPIN-2021-03886
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Comparative Taphonomy and Time-Averaging of Mollusk-Echinoid Assemblages using High-Performance Radiocarbon Dating System
合作研究:使用高性能放射性碳测年系统对软体动物-海胆组合进行比较埋藏学和时间平均
  • 批准号:
    2127644
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Cut and project schemes, combinatorics and averaging properties for Toeplitz subshifts
Toeplitz 子移的剪切和投影方案、组合数学和平均属性
  • 批准号:
    454053022
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    WBP Fellowship
Collaborative Research: Comparative Taphonomy and Time-Averaging of Mollusk-Echinoid Assemblages using High-Performance Radiocarbon Dating System
合作研究:使用高性能放射性碳测年系统对软体动物-海胆组合进行比较埋藏学和时间平均
  • 批准号:
    2127623
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Averaging, spectral multipliers, sparse domination and subelliptic operators
平均、谱乘数、稀疏支配和次椭圆算子
  • 批准号:
    2054220
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
In situ in vivo and ex vivo study of the aging human brain: towards creating an MRI and histology brain template averaging 100 cases
衰老人脑的原位体内和离体研究:创建平均 100 个病例的 MRI 和组织学大脑模板
  • 批准号:
    DGECR-2021-00228
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Averaging Pitot Tubes - K Factor Enhancement
平均皮托管 - K 系数增强
  • 批准号:
    105996
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了