Quantitative assessment of interpretational uncertainty in geological mapping with machine learning

利用机器学习对地质测绘解释不确定性进行定量评估

基本信息

  • 批准号:
    2136845
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

This project aims to tackle the fundamental problem of how to adequately capture and preserve geological uncertainty in reservoirs modelling workflows. Traditional reservoir characterization workflows integrate interpretations from data of different nature - seismic, wireline, core... These interpretations are done by relevant domain experts, who are often separated into siloes, focused only on their aspect of the data, and furthermore can be subject to the experiential bias. When data is finally combined together to create a reservoir model, it is typically done by a single person who must create a coherent representation of the reservoir and its associated uncertainties. Typically, the resulting models are often "best" fits to each bit of data and do not adequately quantify the uncertainties subject to multiple possible interpretations given the sparse nature of the data. Instead we should seek to generate models that combine data in different possible ways to capture the fullest representation of the uncertainty and preserve the knowledge of uncertainties associated with each input data type and its interpretation. The project will develop a way to elicit a wide range of geological concepts as models directly from the data by discovering a variety of data combinations (data types and how they are used/fused together) through using machine learning (ML), while preserving geological knowledge. This will enhance the estimation of uncertainty in our reservoir modelling workflows based on finding a range of unique data combinations/fusions that are coherent (geologically realistic) and unbiased. Achieving this will make a step change enhancement in subsurface uncertainty modelling practice, by identifying a wider possible spread of geological scenarios and providing a quantitative way in assessing their probability. This process will also be significantly faster than a manual approach to developing different ways to use the data to build models. A key element of the project will be to embed geoscience understanding into data driven workflows with machine learning (ML). The challenge is that recent advances in computer science need to be adapted for best implementation in geoscience to capture the context understanding and thinking as it is performed by domain experts. Rigorous ML approach will ensure there is no preferential bias in the way multiple interpretations are elicited from the data. Proper application of ML is able to quantify the impact of the tendencies hidden in the data and how their combinations define possible sedimentological settings. Geologically consistent features need to be derived from the relevant data with account for the associated uncertainty to enhance performance of ML prediction and retain geological realism in ML predictions. The latter requires introduction of solid geoscience understanding into ML prediction model design. Embedded geoscience knowledge will ensure geological consistency of the multiple elicited interpretation leads. The outcome of the PhD project will be a more robust handling of geological uncertainty through novel workflows that use modern machine learning techniques with embedded geoscience understanding. In particular, this will involve adapting Artificial Intelligence (AI) methods, such as deep learning and semi-supervised learning, feature selection, to collate interpretable patterns with the geological context to ensure depositional consistency and geological sense of the predictive models. The feasibility of the novel scientific approach will be justified with a real field study using a modern dataset from the Sea Lion Field, which features modern 3D seismic, as well as log and core data of a comprehensive nature. Once established, this method could be applied to any project where modelling of the subsurface is required.
该项目旨在解决如何在储层建模工作流程中充分捕获和保留地质不确定性的基本问题。传统的储层表征工作流程集成了来自不同性质的数据的解释——地震、电缆、岩心……这些解释是由相关领域的专家完成的,他们通常被分成各自的孤岛,只关注数据的各个方面,而且可能会受到经验偏差的影响。当数据最终组合在一起创建油藏模型时,通常由一个人完成,他必须创建油藏及其相关不确定性的连贯表示。通常,所得到的模型通常是对每一位数据的“最佳”拟合,并且由于数据的稀疏性质而不能充分量化受多种可能解释影响的不确定性。相反,我们应该寻求生成以不同可能方式组合数据的模型,以捕获不确定性的最完整表示,并保留与每种输入数据类型及其解释相关的不确定性知识。该项目将开发一种方法,通过使用机器学习 (ML) 发现各种数据组合(数据类型以及它们如何使用/融合在一起),直接从数据中引出广泛的地质概念作为模型,同时保留地质知识。这将基于寻找一系列连贯(地质现实)且无偏见的独特数据组合/融合,增强对油藏建模工作流程中不确定性的估计。实现这一目标将通过识别更广泛的可能分布的地质场景并提供评估其概率的定量方法,从而使地下不确定性建模实践发生重大变化。这个过程也将比手动方法更快地开发使用数据构建模型的不同方法。该项目的一个关键要素是通过机器学习 (ML) 将地球科学理解嵌入到数据驱动的工作流程中。挑战在于,计算机科学的最新进展需要适应地球科学的最佳实施,以捕获领域专家执行的上下文理解和思维。严格的机器学习方法将确保从数据中得出多种解释的方式不存在偏好偏差。机器学习的正确应用能够量化数据中隐藏趋势的影响以及它们的组合如何定义可能的沉积学设置。需要从相关数据中导出地质一致的特征,并考虑相关的不确定性,以提高机器学习预测的性能并保留机器学习预测的地质真实性。后者需要将扎实的地球科学理解引入机器学习预测模型设计中。嵌入的地球科学知识将确保多种引出的解释线索的地质一致性。该博士项目的成果将是通过使用现代机器学习技术和嵌入式地球科学理解的新颖工作流程,更有效地处理地质不确定性。特别是,这将涉及采用人工智能(AI)方法,例如深度学习和半监督学习、特征选择,将可解释的模式与地质背景进行比较,以确保预测模型的沉积一致性和地质意义。这种新颖的科学方法的可行性将通过使用海狮场的现代数据集进行的实际现场研究来证明,该数据集具有现代 3D 地震以及综合性质的测井和岩心数据。一旦建立,该方法可以应用于任何需要地下建模的项目。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Turbidite Fan Interpretation in 3D Seismic Data by Point Cloud Segmentation Using Machine Learning
使用机器学习通过点云分割对 3D 地震数据中的浊积扇进行解释
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Corlay Q
  • 通讯作者:
    Corlay Q
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
  • 批准号:
    41340011
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
城镇居民亚健康状态的评价方法学及健康管理模式研究
  • 批准号:
    81172775
  • 批准年份:
    2011
  • 资助金额:
    14.0 万元
  • 项目类别:
    面上项目

相似海外基金

Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Greenland-wide Assessment of Proglacial Melange Variability and Implications for Glacier Retreat
格陵兰范围前冰川混杂物变异性及其对冰川退缩的影响的评估
  • 批准号:
    2336627
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Scientific Assessment of the McMurdo Dry Valleys Ecosystem: Environmental Stewardship in a Time of Dynamic Change
会议:麦克默多干谷生态系统的科学评估:动态变化时期的环境管理
  • 批准号:
    2409327
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of learning engagement and assessment programs in multi-person virtual reality
I-Corps:多人虚拟现实中学习参与和评估项目的翻译潜力
  • 批准号:
    2417857
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of an Objective and Customizable Concussion Assessment and Rehabilitation Tool for Specialized Populations
I-Corps:针对特殊人群的客观且可定制的脑震荡评估和康复工具的转化潜力
  • 批准号:
    2348910
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Multi-omics Assessment of Translocation Impacts on Sonoran Pronghorn
NSF PRFB 2023 财年:对索诺兰叉角羚易位影响的多组学评估
  • 批准号:
    2305938
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
CAREER: Eradicate the Gate: Empowering Learners and Equalizing Assessment in K12 Engineering Education
职业:消除大门:K12 工程教育中的学习者赋权和均衡评估
  • 批准号:
    2339619
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了