REDOX MECHANISMS OF RESPIRATORY MUSCLE STRESS ADAPTATION
呼吸肌应激适应的氧化还原机制
基本信息
- 批准号:6628974
- 负责人:
- 金额:$ 36.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-12-01 至 2005-01-31
- 项目状态:已结题
- 来源:
- 关键词:biological signal transduction biomechanics confocal scanning microscopy diaphragm environmental adaptation environmental stressor fatigue fluorescent dye /probe free radical oxygen heat stimulus hypoxia laboratory mouse mitochondria muscle contraction muscle metabolism muscle stress muscle tone oxidative stress respiratory muscles superoxides
项目摘要
DESCRIPTION: During intense exercise, skeletal muscles must withstand stress in
the form of heat, tissue hypoxia, reactive oxygen, steep osmotic gradients,
elevated tissue pressure, sheer stress and over-stimulation. Few cells of the
body could survive such punishment and yet skeletal muscles survive and adapt
to it. To accomplish this, they must be pre-programmed in some primordial way
to sense when the environment is threatening and make rapid adaptations in
contractile and metabolic activity to reduce the threat to survival. We
hypothesize that reactive oxygen is an important signal used for this purpose,
particularly under conditions of metabolic stress, such as high energy demand
(over-stimulation), low energy supply (hypoxia) or overheating (thermal
stress). In this funding period, we will investigate the mechanisms by which
reactive oxygen participates in muscle adaptation to stress. The study will
focus on isolated, perfused mouse diaphragm. SPECIFIC AIM 1 will test the
hypothesis that reactive oxygen is formed as an acute response to hypoxia, heat
stress and over-stimulation (resulting in fatigue) and that conditions of
disordered O2 supply and demand are necessary prerequisites for this response.
Both tissue fluorescence and confocal imaging techniques will be used in these
experiments. SPECIFIC AIM 2 will test the hypothesis that reactive oxygen plays
an important role as a signaling agent to modify metabolic pathways during
stress in such a way as to favor of accumulation of metabolites, preservation
of ATP and reduction of creatine phosphate. This will be tested by blocking the
effects or reactive oxygen with antioxidants and by using transgenic species
with antioxidant over-expression. Measures phosphate metabolism, mitochondrial
function, creatine kinase function and activity of other metabolic enzymes will
be assessed. SPECIFIC AIM 3 will test the hypothesis that reactive oxygen plays
a role in acute changes in the cytoskeleton during stress that promote an
increase in muscle "stiffness" and favor preservation of muscle structural
integrity. Biophysical measurements of the viscoelastic properties of muscle
will be tested before and during stress. These studies should provide new
information regarding the adaptive mechanisms muscle in stressful environments.
描述:在激烈的运动中,骨骼肌必须承受压力,
热的形式,组织缺氧,活性氧,陡峭的渗透压梯度,
组织压力升高、剪切应力和过度刺激。少数细胞的
身体可以在这样的惩罚中幸存下来,而骨骼肌却能存活并适应
要做到这一点,它们必须以某种原始的方式预先编程,
当环境受到威胁时,
收缩和代谢活动,以减少对生存的威胁。我们
假设活性氧是用于此目的重要信号,
特别是在代谢应激的条件下,例如高能量需求,
(过度刺激)、低能量供应(缺氧)或过热(热
应力)。在这一资助期间,我们将调查
活性氧参与肌肉对应激的适应。这项研究将
集中在离体灌注的小鼠膈肌上。具体目标1将测试
假设活性氧是作为对缺氧、热
压力和过度刺激(导致疲劳)以及
混乱的O2供应和需求是这种反应的必要先决条件。
组织荧光和共聚焦成像技术将用于这些研究。
实验SPECIFIC AIM 2将检验活性氧在
作为一种信号传导剂,
以有利于代谢物积累、保存
ATP和磷酸肌酸的减少。这将通过阻塞
影响或活性氧与抗氧化剂和通过使用转基因物种
抗氧化剂过度表达。测量磷酸盐代谢,线粒体
肌酸激酶功能和其他代谢酶的活性将
进行评估。SPECIFIC AIM 3将检验活性氧在
在应激过程中细胞骨架的急性变化中发挥作用,
增加肌肉“硬度”并有利于保持肌肉结构
完整肌肉粘弹性的生物物理测量
将在压力前和压力期间进行测试。这些研究将提供新的
关于压力环境中适应机制肌肉的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS Lindsay CLANTON其他文献
THOMAS Lindsay CLANTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS Lindsay CLANTON', 18)}}的其他基金
Doxorubicin-induced respiratory dysfunction and the protective effects of exercise
阿霉素引起的呼吸功能障碍及运动的保护作用
- 批准号:
10641895 - 财政年份:2019
- 资助金额:
$ 36.88万 - 项目类别:
Doxorubicin cardiotoxicity and the protective effects of exercise
阿霉素心脏毒性和运动的保护作用
- 批准号:
10594901 - 财政年份:2019
- 资助金额:
$ 36.88万 - 项目类别:
Functional role of skeletal muscle in the innate immune response to sepsis
骨骼肌在脓毒症先天免疫反应中的功能作用
- 批准号:
9306141 - 财政年份:2016
- 资助金额:
$ 36.88万 - 项目类别:
MECHANISMS OF OXIDANT PRODUCTION IN RESPIRATORY FAILURE
呼吸衰竭中氧化剂的产生机制
- 批准号:
2839006 - 财政年份:1994
- 资助金额:
$ 36.88万 - 项目类别:
MECHANISMS OF OXIDANT PRODUCTION IN RESPIRATORY FAILURE
呼吸衰竭中氧化剂的产生机制
- 批准号:
2231193 - 财政年份:1994
- 资助金额:
$ 36.88万 - 项目类别:
Redox Mechanisms of Respiratory Muscle Stress Adaptation
呼吸肌应激适应的氧化还原机制
- 批准号:
7035408 - 财政年份:1994
- 资助金额:
$ 36.88万 - 项目类别:
Redox Mechanisms of Respiratory Muscle Stress Adaptation
呼吸肌应激适应的氧化还原机制
- 批准号:
7515501 - 财政年份:1994
- 资助金额:
$ 36.88万 - 项目类别:
MECHANISMS OF OXIDANT PRODUCTION IN RESPIRATORY FAILURE
呼吸衰竭中氧化剂的产生机制
- 批准号:
2029244 - 财政年份:1994
- 资助金额:
$ 36.88万 - 项目类别:
相似海外基金
CAREER: Evolutionary biomechanics and functional morphology of salamander locomotion
职业:蝾螈运动的进化生物力学和功能形态
- 批准号:
2340080 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Continuing Grant
Cruising the whale superhighway: The evolution, biomechanics, and ecological drivers of migration in cetaceans
巡航鲸鱼高速公路:鲸目动物迁徙的进化、生物力学和生态驱动因素
- 批准号:
NE/Y000757/1 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Research Grant
2024 Summer Biomechanics, Bioengineering, and Biotransport Conference; Lake Geneva, Wisconsin; 11-14 June 2024
2024年夏季生物力学、生物工程和生物运输会议;
- 批准号:
2413182 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Standard Grant
Predictive Biomechanics for Modelling Gait Stability and Falls Prediction
用于步态稳定性和跌倒预测建模的预测生物力学
- 批准号:
DP240101449 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Discovery Projects
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
- 批准号:
2338676 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track M: TANDEM: Tensegrity-based Assistive aND rehabilitation Exosuits to complement human bioMechanics
NSF 融合加速器,轨道 M:TANDEM:基于张拉整体的辅助和康复外装,以补充人体生物力学
- 批准号:
2344385 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
- 批准号:
2341368 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Standard Grant
Biomechanics of the Swimming and Chemotaxis of the Leptospiraceae
钩端螺旋体科游泳和趋化性的生物力学
- 批准号:
2309442 - 财政年份:2023
- 资助金额:
$ 36.88万 - 项目类别:
Standard Grant
Conference: Gordon Research Conference on Biomechanics in Vascular Biology and Disease; South Hadley, Massachusetts; 6-11 August 2023
会议:戈登血管生物学和疾病生物力学研究会议;
- 批准号:
2316830 - 财政年份:2023
- 资助金额:
$ 36.88万 - 项目类别:
Standard Grant
Discovering the Biomechanics of Filamentous Fungi and their Hyphae
发现丝状真菌及其菌丝的生物力学
- 批准号:
2233973 - 财政年份:2023
- 资助金额:
$ 36.88万 - 项目类别:
Standard Grant














{{item.name}}会员




