An Empirical and Computational Investigation of Generalisation in Nonword Reading

非单词阅读泛化的实证和计算研究

基本信息

  • 批准号:
    2215137
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Converting text to speech is of interest to researchers in cognitive science, artificial intelligence and technology. Investigations of this process have widely utilized computational modelling and empirical approaches to uncover the mechanisms underlying reading (Coltheart, 2005). As human readers routinely encounter new words, a critical test for a model of reading is whether it can generalize from its training set - i.e. whether it can produce the same kind of pronunciations as humans do for items it has never encountered before. Because of the importance of generalisation, reading nonwords has become a key method in evaluating models of reading.The vast majority of previous work has focused on modelling reading of monosyllabic words and nonwords. However, excluding multisyllabic words does not provide a representative account of reading English. In an attempt to remedy this situation, Mousikou et al. (2017) compared the performance of current models against human performance in disyllabic nonword pronunciation. In doing so, the authors created the first normative nonword corpus for British English. Comparisons of model and human responses in disyllabic reading led the authors to conclude that these models do not provide a representative account of processes involved in disyllabic reading. Models still produced pronunciations that none of the human participants produced. As such, we are still far from a model capable of truly human-like nonword reading.One challenge in modelling nonword pronunciation is the high variability in human nonword reading, even among skilled readers. The source of this variability seems to be partly in individual readers and partly in individual items (Coltheart & Ulicheva, 2018). Following spelling-to-sound rules is believed to be the main mechanism applied in nonword reading, but relying on lexical knowledge has also been shown to play a role, at least for some nonwords (Andrews & Scarratt, 1998). The variability in nonword reading may thus be partly based on individual differences in reliance on lexical vs sublexical knowledge, or differences in spelling-to-sound rules and lexical knowledge.The first aim of the current PhD project is developing a model of reading aloud disyllabic words. To this end, the recently developed corpus of disyllabic nonwords in British English (Mousikou et al. 2017) will be utilized to identify issues in the existing models. Informed by these investigations, a new model with potentially combined features from the existing models will be developed. The second aim of the project is to collect empirical nonword reading data against which to assess the model's generalisation ability, and to explore the variability in human nonword reading. The latter can be explored by comparing the performance of different subgroups of readers in nonword pronunciation. More specifically, the data collection would include two types of responses from the participants: pronunciation of nonwords and ratings of nonword pronunciations given by the newly developed model. Utilizing the richness of the qualitative pronunciation data and the objectivity of the quantitative ratings data in comparisons of human and model performance would maximise the efficiency of these investigations. Analysis of such fine-grained data could also facilitate detection of patterns in nonword reading characterised by particular subgroups of readers.Better understanding of reading aloud has the potential to contribute to the development of better screening and support for populations with reading difficulties. Additionally, more accurate models of reading aloud can inform the development of assistive technologies, such as speech synthesisers for the visually impaired. The prospect of advancing the development of these applications makes understanding reading aloud a highly valuable endeavour.
将文本转换为语音是认知科学、人工智能和技术研究人员感兴趣的问题。对这一过程的调查已经广泛使用了计算模型和经验方法来揭示阅读背后的机制(colheart, 2005)。由于人类读者经常会遇到新单词,对阅读模型的一个关键测试是它是否能从它的训练集中泛化——也就是说,它是否能像人类一样,对以前从未遇到过的单词产生同样的发音。由于泛化的重要性,阅读非词已成为评估阅读模式的关键方法。以往的绝大多数工作都集中在单音节单词和非单词的建模阅读上。然而,排除多音节单词并不能提供阅读英语的代表性说明。为了纠正这种情况,Mousikou等人(2017)将当前模型的表现与人类在双音节非单词发音中的表现进行了比较。在此过程中,作者为英式英语创建了第一个规范的非词语料库。对双音节阅读中的模型和人类反应的比较使作者得出结论,这些模型并不能提供双音节阅读过程的代表性说明。模型仍然能发出人类参与者无法发出的发音。因此,我们离能够真正像人类一样阅读非单词的模型还很远。建模非单词发音的一个挑战是人类非单词阅读的高度可变性,即使在熟练的读者中也是如此。这种差异的来源似乎部分在于个别读者,部分在于个别项目(Coltheart & Ulicheva, 2018)。遵循从拼写到发音的规则被认为是应用于非单词阅读的主要机制,但依赖词汇知识也被证明发挥了作用,至少对于一些非单词(Andrews & Scarratt, 1998)。因此,非单词阅读的可变性可能部分基于个体对词汇知识和亚词汇知识的依赖差异,或者拼写到声音规则和词汇知识的差异。目前博士项目的第一个目标是开发一个大声朗读双音节单词的模型。为此,我们将利用最近开发的英国英语双音节非词语料库(Mousikou et al. 2017)来识别现有模型中的问题。根据这些调查,将开发一个具有现有模型的潜在组合特征的新模型。该项目的第二个目标是收集经验非词阅读数据,以评估模型的泛化能力,并探索人类非词阅读的可变性。后者可以通过比较不同读者群在非单词发音中的表现来探索。更具体地说,数据收集将包括来自参与者的两种类型的反应:非词的发音和由新开发的模型给出的非词发音评级。在比较人类和模型的表现时,利用定性发音数据的丰富性和定量评分数据的客观性可以最大限度地提高这些调查的效率。对这种细粒度数据的分析还可以促进对非词阅读模式的检测,这些模式以特定的读者亚群为特征。更好地理解大声朗读有可能有助于更好地筛查和支持有阅读困难的人群。此外,更准确的大声朗读模型可以为辅助技术的发展提供信息,比如为视障人士设计的语音合成器。推动这些应用程序发展的前景使得理解大声朗读成为一项非常有价值的努力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
  • 批准号:
    2400087
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Multi-Scale Experimental and Computational Investigation of Microscale Origins of Ductile Failure
延性破坏微观起源的多尺度实验和计算研究
  • 批准号:
    2334678
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Computational Investigation of Extralinguistic Cognition in Developmental Parsing
博士论文研究:发展句法中语言外认知的计算研究
  • 批准号:
    2314618
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computational investigation of wood combustion in timber buildings
木结构建筑中木材燃烧的计算研究
  • 批准号:
    2902452
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
ERI: Computational Investigation of High-Pressure Turbulent Premixed Flames - Physical Insights and Two-Scale Predictive Modeling
ERI:高压湍流预混火焰的计算研究 - 物理见解和两尺度预测建模
  • 批准号:
    2301829
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computational and Experimental Investigation and Design of Protein Interaction Specificity
蛋白质相互作用特异性的计算和实验研究与设计
  • 批准号:
    10621973
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Experimental and computational investigation of low Reynolds number Shock / Boundary Layer Interaction (SBLI)
低雷诺数冲击/边界层相互作用 (SBLI) 的实验和计算研究
  • 批准号:
    2908406
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Computational Chemistry Supported Investigation of Sustainable Organic Coatings
计算化学支持可持续有机涂料的研究
  • 批准号:
    2748240
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Investigation of Continuous-Flow Mixing of Non-Newtonian Fluids with Energy-Efficient Coaxial Mixers through Advanced Flow Visualization Techniques and Computational Fluid Dynamics
通过先进的流动可视化技术和计算流体动力学研究使用节能同轴混合器的非​​牛顿流体的连续流动混合
  • 批准号:
    RGPIN-2019-04644
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了