MAGNETIC RESONANCE IMAGING OF MOVING PATIENTS AT ULTRA-HIGH FIELD: REAL-TIME MOTION CORRECTED PARALLEL-TRANSMIT PULSE DESIGN

超高场移动患者的磁共振成像:实时运动校正并行传输脉冲设计

基本信息

  • 批准号:
    2218828
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Ultra-high field (UHF, 7T and above) magnetic resonance imaging (MRI) scanners present a unique opportunity to study the brain at much higher resolution than previously possible. Many brain MRI acquisitions last upwards of several minutes. Any small deviation in subject position during this time, due to involuntary movement or breathing, can change the imaged volume, leading to destructive artefacts in the images, and necessitating a rescan of the patient. Additionally, questions arise regarding patient safety, as effects of motion on the small amounts of tissue heating which occur during MRI are not well understood. Motion is specifically problematic with uncooperative patients such as in paediatric imaging, or for patients with Parkinson's or dementia. Sedation, which is common practice in such cases, is invasive, affects results obtained for non-structural MRI techniques (e.g. functional MRI), and has been reported to cause adverse side effects and even admittance to emergency care. To overcome electromagnetic interference at UHF, parallel transmission (pTx) hardware can be used, significantly improving image quality and control over tissue heating. pTx allows radiofrequency (RF) pulses -used to generate the MRI signal- to be delivered by multiple, independently controlled RF channels. However, the benefits of pTx come at a cost of exacerbating the motion-related problems described above, as the channels' RF interacts in complex ways. The extra degrees of freedom offered by pTx (i.e. because the channels are independently controlled) mean that the problem could be overcome with a new approach to pTx RF pulse design, given a more comprehensive understanding of the interactions between channels under conditions of motion, and application of that to the RF pulse design process.My research approaches this problem in two ways. Firstly, I am developing a motion-robust approach to pTx pulse design. Using computer simulations, I initially investigated the effects of motion in different pTx contexts to better understand the dynamics involved. Following this, I devised a new approach which has reduced the sensitivity of pTx pulses to motion in simulations, meaning that image quality remains high even in the case of patient motion. My immediate next steps are to continue simulations to ensure that the safety (tissue heating) issue also benefits from my approach, and validate the approach using scanner experiments. Beyond reducing sensitivity by introducing motion-robustness, a second focus of my research contributes towards a real-time pTx pulse design method. This would allow real-time updates to be applied to the scanner, compensating for patient motion as it occurs throughout the scan, and therefore more accurately and effectively negating all motion-induced effects. I am using a machine learning approach to train a neural network with simulated training data for development of the approach, before testing on experiments. Implications of my work are widespread. By removing motion-related concerns over pTx, the benefits of UHF MRI (e.g. the higher image resolution) can be applied clinically. Areas such as epilepsy and MS diagnosis and prognosis have already demonstrated benefits of this in research contexts, but the technical challenges mentioned here currently prevent its widespread or clinical use
超高场(UHF,7 T及以上)磁共振成像(MRI)扫描仪提供了一个独特的机会,以比以前更高的分辨率研究大脑。许多脑部MRI采集持续数分钟以上。在此期间,由于无意识运动或呼吸,受试者位置的任何小偏差都可能改变成像体积,导致图像中的破坏性伪影,并需要重新扫描患者。此外,还出现了关于患者安全的问题,因为对MRI期间发生的少量组织加热的运动影响尚未充分了解。对于不合作的患者,例如在儿科成像中,或者对于帕金森氏症或痴呆症患者,运动是特别有问题的。镇静,这是在这种情况下的常见做法,是侵入性的,影响非结构性MRI技术(如功能性MRI)获得的结果,并已报告导致不良副作用,甚至进入急诊室。为了克服UHF下的电磁干扰,可以使用并行传输(pTx)硬件,从而显著提高图像质量和对组织加热的控制。pTx允许射频(RF)脉冲-用于生成MRI信号-由多个独立控制的RF通道输送。然而,pTx的好处是以加剧上述运动相关问题为代价的,因为通道的RF以复杂的方式相互作用。pTx提供的额外自由度(即因为通道是独立控制的)意味着,如果对运动条件下通道之间的相互作用有更全面的了解,并将其应用于RF脉冲设计过程,则可以通过pTx RF脉冲设计的新方法来克服这个问题。我的研究从两个方面解决这个问题。首先,我正在开发一种运动鲁棒的pTx脉冲设计方法。使用计算机模拟,我最初研究了不同pTx背景下运动的影响,以更好地理解所涉及的动态。在此之后,我设计了一种新方法,该方法降低了pTx脉冲对模拟中运动的敏感性,这意味着即使在患者运动的情况下,图像质量也保持较高。我的下一步是继续模拟,以确保安全(组织加热)问题也受益于我的方法,并使用扫描仪实验验证该方法。除了通过引入运动鲁棒性来降低灵敏度之外,我的研究的第二个重点有助于实现实时pTx脉冲设计方法。这将允许将实时更新应用于扫描仪,补偿在整个扫描过程中发生的患者运动,因此更准确和有效地消除所有运动引起的影响。我正在使用机器学习方法来训练神经网络,模拟训练数据用于开发方法,然后进行实验测试。我的工作影响广泛。通过消除对pTx的运动相关担忧,UHF MRI的优势(例如更高的图像分辨率)可以应用于临床。癫痫和MS诊断和预后等领域已经在研究背景下证明了这一点的好处,但这里提到的技术挑战目前阻碍了其广泛或临床应用

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
  • 批准号:
    2319151
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Safe Continuum Robot Inside Magnetic Resonance Imaging (MRI)
职业:磁共振成像 (MRI) 内的安全连续体机器人
  • 批准号:
    2339202
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Magnetic resonance imaging studies of catalytic monoliths
催化整体的磁共振成像研究
  • 批准号:
    2905857
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Magnetic Resonance Imaging (MRI) and Artificial Intelligence (AI) can improve preoperative malignancy risk prediction of ovarian masses.
磁共振成像(MRI)和人工智能(AI)可以改善卵巢肿块的术前恶性肿瘤风险预测。
  • 批准号:
    486885
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Establishment of human abdominal aortic aneurysm wall strength prediction model using Ex Vivo Superparamagnetic Iron Oxide–Enhanced Magnetic Resonance Imaging
利用Ex Vivo超顺磁性氧化铁建立人体腹主动脉瘤壁强度预测模型
  • 批准号:
    23K08226
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comparison of direct and indirect magnetic resonance imaging of myelin in Alzheimer's disease
阿尔茨海默病髓磷脂直接和间接磁共振成像的比较
  • 批准号:
    10680319
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Perfluoroalkyl substances and non-alcoholic fatty liver disease in children: Leveraging magnetic resonance imaging to unravel potential mechanisms and exposure mixture effects
全氟烷基物质与儿童非酒精性脂肪肝:利用磁共振成像揭示潜在机制和暴露混合物效应
  • 批准号:
    10646759
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
SBIR Phase I: Novel development of a pediatric Magnetic Resonance Imaging (MRI) scanner
SBIR 第一阶段:儿科磁共振成像 (MRI) 扫描仪的新开发
  • 批准号:
    2323231
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Innovation of cancer chemoradiotherapy based on hyperpolarized-nuclear magnetic resonance metabolic imaging
基于超极化核磁共振代谢成像的癌症放化疗创新
  • 批准号:
    23H02870
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Functional Magnetic Resonance Imaging and Deep Learning to Improve Deep Brain Stimulation Therapy
功能磁共振成像和深度学习改善脑深部刺激疗法
  • 批准号:
    10717563
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了