Lorentz invariance and diffeomorphism invariance in modified gravity
修正引力中的洛伦兹不变性和微分同胚不变性
基本信息
- 批准号:2249060
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research Area: Mathematical PhysicsA large number of modified theories of gravity has been proposed and studied in the last decade. Amongst those are modified teleparallel gravity models. In a suitable limit these theories become equivalent to Einstein's theory of General Relativity (GR) in which case one speaks of the teleparallel equivalent of general relativity (TEGR). While GR is, by construction, invariant under local Lorentz transformations, TEGR is only quasi-invariant in the sense that its action is locally Lorentz invariant only up to a boundary term. This does not affect the field equations of the theory which are equivalent to those of GR.This project aims to develop an in depth understanding of the role of local Lorentz transformations and local coordinate transformations in the context of modified gravity models.In the first 6-12 months the student will study various modified theories of gravity. These will contain models which are not locally Lorentz invariant or not invariant under coordinate transformations.In year 2 the student will derive the equations of motion for some of these theories and for models not previously studied. An important milestone will be to show that these equations reduce to previously studied models in a certain limit.Next, these equations will be studied in the context of spherical symmetry and in cosmology. The student will work on constructing some explicit solutions to these equations and their properties will be investigated.This investigation leads to the following interesting questions the student can study: First, the existence of regular cosmological models where the initial singularity is removed. Second, the existence of regular black hole solution.
研究领域:数学物理学在过去的十年里,人们提出并研究了大量改进的引力理论。其中包括修改后的远程平行重力模型。在适当的限度内,这些理论变得等同于爱因斯坦的广义相对论(GR),在这种情况下,人们谈到广义相对论的远程平行(TEGR)。虽然GR在构造上是局部Lorentz变换下的不变的,而TEGR只是在其作用直到边界项的局部Lorentz不变的意义上是准不变的。这并不影响理论中与GR等价的场方程。本项目旨在深入理解局部洛伦兹变换和局部坐标变换在修正重力模型中的作用。在最初的6-12个月中,学生将学习各种修正的重力理论。这些包含的模型不是局部洛伦兹不变的,或者在坐标变换下不是不变的。在第二年,学生将为这些理论中的一些和以前没有研究过的模型推导出运动方程。一个重要的里程碑将是证明这些方程在一定的范围内归结为以前研究的模型。接下来,这些方程将在球对称和宇宙学的背景下进行研究。学生将致力于构造这些方程的显式解,并研究它们的性质。这项调查导致了学生可以学习的下列有趣的问题:第一,规则宇宙模型的存在,其中初始奇点被去除。第二,正则黑洞解的存在性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Scale invariance: A new paradigm for particle physics and cosmology
尺度不变性:粒子物理学和宇宙学的新范式
- 批准号:
DP220101721 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
- 批准号:
DP230101629 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
- 批准号:
RGPIN-2020-07120 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
EAR-PF: Are large earthquakes like small earthquakes? Using synthetic earthquakes to resolve discrepancies in observations of earthquake stress drop magnitude-invariance
EAR-PF:大地震和小地震一样吗?
- 批准号:
2204102 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship Award
RI: Small: Understanding the Inductive Bias Caused by Invariance and Multi Scale in Neural Networks
RI:小:理解神经网络中不变性和多尺度引起的归纳偏差
- 批准号:
2213335 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:
RGPIN-2018-04122 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:
RGPIN-2018-04122 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
- 批准号:
RGPIN-2020-07120 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




