Using AI to leverage new forms of data in modelling cycling behaviours in the LCR

使用人工智能利用新形式的数据对 LCR 中的骑行行为进行建模

基本信息

  • 批准号:
    2271316
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The Problem:It is estimated that 22% of adults in England are physically inactive, and these rates are higher within each Local Authority within the Liverpool City Region (LCR) (PHE 2019). Physical activity is an important determinant of health, being associated with lower risk of cardiovascular diseases, as well as improved mental wellbeing. Designing cities and neighbourhoods to encourage physical activity is therefore an important policy priority. An increasingly adopted approach is to increase the uptake of active travel, particularly cycling. However, only 3.3% of adults in England cycle for travel at least 3 times per week, and rates are lower for the LCR. Targeted investment in cycling infrastructure can encourage more individuals to take up cycling, as well as reduce air pollution indirectly benefiting health.The Solution:This project will use state-of-the-art machine learning and AI techniques to leverage new forms of data to improve decision making around cycling investment. Such approaches are rarely applied within transport modelling, but offer novelty to process and model complex (big) data to inform cycling behaviours and infrastructure provision. A key advantage of the PhD will be the development of bespoke methods that enable to make the most out of data unexplored in the context of cycling. These methods will be designed so that they can be easily deployed within any local government to inform cycling provision. This project is designed to co-produce real-world solutions alongside the non-academic partner, the LCR, thus maximising impact.Outline of the PhD:The project will be structured as a publication-based PhD, and will include three main subprojects:1. Modelling volume of cycling traffic from pneumatic road tube countersThis project will use cycling counts from pneumatic road tube counters and ancillary data about the characteristics of the locations where they are placed to build a predictive model of cycling counts at the street segment that can be deployed to the entire network of the LCR. This will enhance the understanding of the distribution of cyclists to agencies related a range of domains, from public health to transport planning. Methodologically, this project will expand tree-based models (e.g. random forests, boosted trees) to explicitly incorporate spatial features and relationships.2. Understanding the drivers behind cycling flowsThis paper will unpack the driving factors behind the estimates obtained in the previous one. By combining traditional socio-economic sources of data (e.g. Census, Deprivation scores) with new approaches such as video footage or imagery data that recognise features of the environment (e.g. road quality, foliage, etc.), the study will identify how environmental factors interact with social conditions to determine the extent to which people cycle in different places. To be able to leverage these data sources, state-of-the-art AI techniques such as convolutional neural networks (CNNs) will be required.3. Predicting where to invest on urban cycling infrastructureIn this final paper, the student will use results from the previous two in order to build a decision-making system that informs policies on improvement of cycling infrastructure in the LCR. The system will fulfil two main functions: first, it will provide an intuitive way of visualising and interacting with the results of the predictive models generated and the measures of uncertainty associated with them; second, it will feature the capability of asking "what-if" type of questions around the improvement of infrastructure. In this context, the student will explore the suitability of spatial interaction and agent-based models. It is expected this system will enable the identification of policy priorities within the LCR.
问题:据估计,英格兰有22%的成年人缺乏身体活动,而这些比率在利物浦城市地区(LCR)的每个地方当局都更高(PHE 2019)。身体活动是健康的重要决定因素,与降低心血管疾病风险以及改善心理健康有关。因此,设计鼓励体育活动的城市和社区是一项重要的政策优先事项。一个越来越多采用的方法是增加主动旅行,特别是骑自行车。然而,只有3.3%的英国成年人每周至少骑3次自行车旅行,LCR的费率更低。有针对性地投资于自行车基础设施,可以鼓励更多的人骑自行车,并减少空气污染,间接有益于健康。解决方案:该项目将使用最先进的机器学习和人工智能技术,利用新形式的数据来改善有关自行车投资的决策。这种方法很少应用于交通建模,但为处理和建模复杂的(大)数据提供了新奇,以告知骑自行车行为和基础设施的提供。博士的一个关键优势将是定制方法的开发,使最大限度地利用自行车背景下未探索的数据。这些方法的设计将使它们可以很容易地部署在任何地方政府,以通知自行车的规定。该项目旨在与非学术合作伙伴LCR共同制作现实世界的解决方案,从而最大限度地发挥影响力。博士学位大纲:该项目将以出版为基础的博士学位,并将包括三个主要子项目:1.气动路管计数器的自行车交通量建模该项目将使用气动路管计数器的自行车计数和有关其放置位置特征的辅助数据,以构建可部署到整个LCR网络的街道段的自行车计数预测模型。这将加强对骑自行车者分布的了解,以使从公共卫生到交通规划等一系列领域的相关机构了解骑自行车者的分布情况。在方法上,该项目将扩展基于树的模型(例如随机森林,提升树),以显式地纳入空间特征和关系。了解骑自行车流量背后的驱动因素本文将解开前一个估计背后的驱动因素。通过将传统的社会经济数据来源(例如人口普查、Deepest评分)与新的方法(例如识别环境特征(例如道路质量、树叶等)的录像或图像数据)相结合,这项研究将确定环境因素如何与社会条件相互作用,以确定人们在不同地方骑自行车的程度。为了能够利用这些数据源,将需要最先进的人工智能技术,如卷积神经网络(CNN)。预测在哪里投资城市自行车基础设施在这篇最后的论文中,学生将使用前两篇论文的结果,以建立一个决策系统,为改善LCR自行车基础设施的政策提供信息。该系统将实现两个主要功能:第一,它将提供一种直观的方式来可视化和交互所生成的预测模型的结果以及与之相关的不确定性度量;第二,它将具有围绕基础设施的改进提出“假设”类型问题的能力。在这种情况下,学生将探索空间交互和基于代理的模型的适用性。预计这一系统将有助于在LCR内确定政策优先事项。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

AI 辅助药物设计姜黄素化合物的靶向结构修饰及其防治肝衰竭的成药性研究
  • 批准号:
    JCZRLH202500512
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
应用于AI芯片的先进封装TSV关键技术研发
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI驱动的工业微生物合成元件挖掘与产品智造
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于“治未病”理论构建AI赋能下的肥胖伴焦虑状态针灸数智化防治体系
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
  • 批准号:
    FT230100021
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Developing the Blue-Collar AI Workforce
发展蓝领人工智能劳动力
  • 批准号:
    2400875
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
敵対的摂動と生成AIを用いた責任あるAIのためのデータセット健全化システムの開発
使用对抗性扰动和生成人工智能开发负责任人工智能的数据集健康系统
  • 批准号:
    24KJ2132
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
顔面写真からセファロ計測点を高精度予測する被曝回避AIベースセファロ分析法の確立
建立基于人工智能的头影测量分析方法,从面部照片高精度预测头影测量点
  • 批准号:
    24K13203
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
COVID-19後遺症のリスク低減を目指したAIによるデータ駆動型予測システムの構築
使用 AI 构建数据驱动的预测系统,以降低 COVID-19 后遗症的风险
  • 批准号:
    24K13321
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
レセプト情報のAI解析による認知症・フレイル関連事象のリスク因子解析
使用收据信息的人工智能分析对痴呆/虚弱相关事件进行风险因素分析
  • 批准号:
    24K13323
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
腸内微生物叢を利用した併用療法開発のためのがん治療予測AIモデル構築
建立人工智能模型来预测癌症治疗,以开发利用肠道微生物群的联合疗法
  • 批准号:
    24KJ0776
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
アニーリングと機械学習の融合による説明可能AI基盤の研究
结合退火和机器学习研究可解释的人工智能基础设施
  • 批准号:
    24KJ1081
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了