Neural Mechanisms and Functional Purpose of Dynamic Dimensionality States in Sensory Cortex
感觉皮层动态维度状态的神经机制和功能目的
基本信息
- 批准号:2271311
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past decade, measurements of brain activity have advanced to record a rapidly growing number of neurons simultaneously. Strikingly, these large-scale recordings have revealed that brain activity can often be effectively described using far fewer variables than the number of recorded cells, hence confining the neural activity to a low-dimensional space. The magnitude of this network feature has been observed to change dynamically, varying when we pay attention, perceive new information or memorise past experiences. Despite these observed correlations to task performance, a fundamental understanding of how network dimensionality influences sensory processing is missing. Additionally, it is unknown what biological network properties, such as network connectivity or the balance of different cell types, give rise to this dynamic phenomenon. We will address these questions by combining data analysis of large-scale calcium recordings from mice with the development of new artificial models that replicate these characteristics. Together, these approaches will yield testable hypotheses of how dimensionality causally influences the perception of the world around us, which we will put to the test by perturbing brain activity in mice during different dimensionality states. In short, we will develop a low-level understanding of how an internal state of a network, effective dimensionality, can modulate the network's computational capacity. This network trait is fundamental to biological and artificial systems alike, and without a quantitative understanding of its mechanisms, we critically limit our knowledge of how to make sense of our surroundings
在过去的十年中,大脑活动的测量已经发展到同时记录快速增长的神经元数量。引人注目的是,这些大规模的记录表明,大脑活动通常可以使用比记录的细胞数量少得多的变量来有效地描述,因此将神经活动限制在低维空间中。据观察,这种网络特征的大小是动态变化的,当我们注意力集中、感知新信息或记忆过去的经验时,这种变化会发生变化。尽管观察到这些与任务表现的相关性,但对网络维度如何影响感觉处理的基本理解仍然缺失。此外,还不知道是什么生物网络特性,如网络连接或不同细胞类型的平衡,引起了这种动态现象。我们将通过结合对小鼠大规模钙记录的数据分析和复制这些特征的新人工模型的开发来解决这些问题。总之,这些方法将产生维度如何因果地影响我们对周围世界的感知的可验证的假设,我们将通过在不同维度状态下扰乱小鼠的大脑活动来测试。简而言之,我们将对网络的内部状态(有效维度)如何调节网络的计算能力有一个低层次的理解。这种网络特征对生物和人工系统都是至关重要的,如果没有对其机制的定量理解,我们对如何理解周围环境的知识就会受到严重限制
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Co-engineering Hebbian and Homeostatic Plasticity Mechanisms to Induce Targeted Functional Neural Connectivity Changes
共同设计赫布和稳态可塑性机制以诱导有针对性的功能性神经连接变化
- 批准号:
10754414 - 财政年份:2023
- 资助金额:
-- - 项目类别:
BRC-BIO: Unraveling mechanisms of neural regeneration and functional recovery in zebrafish
BRC-BIO:揭示斑马鱼神经再生和功能恢复的机制
- 批准号:
2313303 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
NCS-FO: Functional and neural mechanisms of integrating multiple artificial somatosensory feedback signals in prosthesis control
NCS-FO:在假肢控制中集成多个人工体感反馈信号的功能和神经机制
- 批准号:
2327217 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Structural and Functional Neural Mechanisms of Theory of Mind Development
心理理论发展的结构和功能神经机制
- 批准号:
2737046 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Uncovering biophysical and functional mechanisms of information processing in neural systems
揭示神经系统信息处理的生物物理和功能机制
- 批准号:
RGPIN-2020-05868 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Neural Mechanisms Underlying Functional Plasticity of the Human Brain
人脑功能可塑性背后的神经机制
- 批准号:
RGPIN-2016-05343 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Uncovering biophysical and functional mechanisms of information processing in neural systems
揭示神经系统信息处理的生物物理和功能机制
- 批准号:
RGPIN-2020-05868 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
NCS-FO: Functional and neural mechanisms of integrating multiple artificial somatosensory feedback signals in prosthesis control
NCS-FO:在假肢控制中集成多个人工体感反馈信号的功能和神经机制
- 批准号:
2123678 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Neural Mechanisms Underlying Functional Plasticity of the Human Brain
人脑功能可塑性背后的神经机制
- 批准号:
RGPIN-2016-05343 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: NCS-FO: Intelligent Closed-Loop Neural Interface System for Studying Mechanisms of Somatosensory Feedback in Control of Functional and Stable Locomotion
合作研究:NCS-FO:智能闭环神经接口系统,用于研究体感反馈控制功能性和稳定运动的机制
- 批准号:
2151788 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




