A Set-Theoretical Foundation for Formalised Mathematics
形式化数学的集合论基础
基本信息
- 批准号:2273715
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This PhD project aims to develop a variant of set theory, intended to yield more faithful formalisations of ordinary, textbook style mathematics. We also seek to contribute to the area of computer assisted mathematics, via implementation of this theory in the proof-assistant Isabelle. Zermelo-Fraenkel (ZF) set theory is recognised by mathematicians as a tried and tested foundation, having been intensely studied over the 20th century. However, practical applications of ZF in computer assisted mathematics pale in comparison to the great success of type theoretical systems such as Coq, Agda, and now, Lean. Yet still, such systems fail to gain the attraction of mathematicians, because in practice, they use a combination of natural language, set theory, and first order logic. Rigorous formalisation of mathematics is a laborious process, since much of the reasoning is hidden in prose. We hope to partially alleviate this issue by extending ZF with features which are implicitly employed by the mathematician through natural language. We highlight three main features we wish to implement: abstract data types, exceptions, and definite descriptions.Objects in most set theories are governed by a set of axioms which describe the behaviour of the set membership relation. As a consequence, all objects in the domain of discourse are viewed as sets. This forces us to use low-level definitions, such as a,b = ((a),(a,b)), and 3 = (0,1,2). In the absence of a definition mechanism, this allows us to prove strange theorems like (a)'in'(a,b), and 2'in'3. Previous work from my undergraduate dissertation presented a variant of ZF set theory, which admits ordered pairs, as structured, non-set objects (urelements). A generalisation of this would provide a framework for creating classes of objects which have a distinct internal (set) representation and external (urelement) representation.Undefined terms commonly arise in mathematics, with the most known example of dividing an integer by zero. The introduction of an object similar to the notion of an ``exception'' found in most programming languages, would allow better support for these undefined terms, and partial functions. Definite descriptions are employed when a mathematician refers to an object using a phrase such as ``the unique x such that ...''We will use ZF as a foundation to be extended, in order to preserve logical consistency, among other desirable properties. Implementation of these features in a formal system would allow for a more expressive language of mathematics, more aligned with human written mathematics.
这个博士项目旨在开发一种集合论的变体,旨在产生更忠实的普通,教科书风格的数学形式化。我们还寻求有助于计算机辅助数学领域,通过实施这一理论的证明助理伊莎贝尔。Zermelo-Fraenkel(ZF)集合论被数学家认为是一个久经考验的基础,在世纪得到了广泛的研究。然而,ZF在计算机辅助数学中的实际应用与Coq,Agda和现在的Lean等类型理论系统的巨大成功相比相形见绌。然而,这样的系统仍然没有获得数学家的吸引力,因为在实践中,它们使用自然语言,集合论和一阶逻辑的组合。数学的严格形式化是一个费力的过程,因为大部分推理都隐藏在散文中。我们希望通过扩展ZF来部分缓解这个问题,这些特征是数学家通过自然语言隐式使用的。我们强调三个主要特点,我们希望实现:抽象数据类型,例外,并明确的descriptions.Objects在大多数集理论是由一组公理描述的行为集成员关系。因此,话语领域中的所有对象都被视为集合。这迫使我们使用低级定义,例如a,B =((a),(a,B))和3 =(0,1,2)。在缺乏定义机制的情况下,这允许我们证明奇怪的定理,如(a)in(a,B)和2 in 3。以前的工作从我的本科论文提出了一个变种的ZF集理论,它承认有序对,作为结构化的,非集对象(urelements)。对这一点的推广将提供一个框架,用于创建具有不同内部(集合)表示和外部(元素)表示的对象类。未定义的术语通常出现在数学中,最著名的例子是整数除以零。引入一个类似于大多数编程语言中的“异常”概念的对象,可以更好地支持这些未定义的术语和部分函数。当数学家使用诸如“唯一的x使得.等短语来指代一个对象时,就采用了确定性描述。我们将使用ZF作为扩展的基础,以保持逻辑一致性以及其他理想的属性。在正式系统中实现这些功能将允许更有表现力的数学语言,更符合人类书面数学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Theoretical foundation of sublinear-time algorithms
亚线性时间算法的理论基础
- 批准号:
RGPIN-2015-03907 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
EAGER: Collaborative Research: On the Theoretical Foundation of Recommendation System Evaluation
EAGER:协作研究:推荐系统评价的理论基础
- 批准号:
2142675 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
A Theoretical Foundation and Practical Platform for Adversarial Machine Learning
对抗性机器学习的理论基础和实践平台
- 批准号:
543522-2019 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants
EAGER: Collaborative Research: On the Theoretical Foundation of Recommendation System Evaluation
EAGER:协作研究:推荐系统评价的理论基础
- 批准号:
2142681 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Research on the input trade model with Keynesian unemployment: A theoretical foundation of international input-output analysis
凯恩斯主义失业下的投入贸易模型研究:国际投入产出分析的理论基础
- 批准号:
21K01437 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comparative Study for Theoretical Foundation of Global Relations: the temporal turn and beyond
全球关系理论基础的比较研究:时间转向与超越
- 批准号:
21H00690 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theoretical foundation of sublinear-time algorithms
亚线性时间算法的理论基础
- 批准号:
RGPIN-2015-03907 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
SaTC: CORE: Small: Collaborative: When Adversarial Learning Meets Differential Privacy: Theoretical Foundation and Applications
SaTC:核心:小型:协作:当对抗性学习遇到差异性隐私时:理论基础和应用
- 批准号:
1935923 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: When Adversarial Learning Meets Differential Privacy: Theoretical Foundation and Applications
SaTC:核心:小型:协作:当对抗性学习遇到差异性隐私时:理论基础和应用
- 批准号:
1935928 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: A Theoretical Foundation For Practical Communication with Feedback
合作研究:CIF:媒介:带反馈的实际沟通的理论基础
- 批准号:
1956192 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




