Scalable, Sample Efficient and Interpretable Bayesian Deep Learning
可扩展、样本高效且可解释的贝叶斯深度学习
基本信息
- 批准号:2275741
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My work will be focused around the EPSRC's "Artificial intelligence technologies" research area. An abstract can be read bellow.Neural Networks (NN) are a class of machine learning models which have recently soared in popularity due to their flexibility and scalability to large amounts of data. NNs are most commonly trained using Maximum a Posteriori (MAP) parameter estimation. This framework provides point estimates for model weights, often leading to overfitting, overconfidence in predictions and sample inefficiency. Additionally, NNs often behave like black boxes. Their predictions are notoriously difficult to interpret.Bayesian methods provide a principled way of tackling the issue of overconfidence in model parameters. In Bayesian Neural Networks (BNN), weight point estimates are substituted by probability distributions. Predictions are made by marginalising the weights, considering all possible parameter values. In these models, uncertainty in weight space is translated into uncertainty in predictions, giving us a way to model 'what we do not know.' Unfortunately, exact inference is often intractable for complex models and approximate inference methods tend to rely on crude approximations which present a trade-off between accuracy of uncertainty estimates and scalability. My goal is to develop a new class of flexible approximate inference methods for neural networks which are able to fit complex data, produce reliable uncertainty estimates, and scale to large datasets. I want to use the uncertainty estimates produced by these models to automatically generate explanations that are understandable to non-experts about these model's decisions. Finally, I want to use these approximate inference methods to reduce model-bias and build sample-efficient model-based reinforcement learning algorithms.
我的工作将集中在 EPSRC 的“人工智能技术”研究领域。摘要如下。神经网络(NN)是一类机器学习模型,由于其对大量数据的灵活性和可扩展性,最近越来越受欢迎。神经网络最常使用最大后验 (MAP) 参数估计进行训练。该框架提供了模型权重的点估计,通常会导致过度拟合、预测过度自信和样本效率低下。此外,神经网络通常表现得像黑匣子。众所周知,他们的预测很难解释。贝叶斯方法提供了解决模型参数过度自信问题的原则性方法。在贝叶斯神经网络 (BNN) 中,权重点估计被概率分布替代。预测是通过边缘化权重并考虑所有可能的参数值来进行的。在这些模型中,权重空间的不确定性转化为预测的不确定性,为我们提供了一种对“我们不知道的东西”进行建模的方法。不幸的是,对于复杂模型来说,精确推断通常很困难,而近似推断方法往往依赖于粗略近似,这在不确定性估计的准确性和可扩展性之间进行权衡。我的目标是为神经网络开发一类新型灵活的近似推理方法,该方法能够拟合复杂的数据,产生可靠的不确定性估计,并扩展到大型数据集。我想使用这些模型产生的不确定性估计来自动生成非专家可以理解的关于这些模型决策的解释。最后,我想使用这些近似推理方法来减少模型偏差并构建样本高效的基于模型的强化学习算法。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
CIF: SMALL: Theoretical Foundations of Partially Observable Reinforcement Learning: Minimax Sample Complexity and Provably Efficient Algorithms
CIF:SMALL:部分可观察强化学习的理论基础:最小最大样本复杂性和可证明有效的算法
- 批准号:
2315725 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
SCH: ChangeGradients: Promoting Health Behavior Change with Clinically Integrated Sample-Efficient Policy Gradient Methods
SCH:ChangeGradients:通过临床整合的样本有效策略梯度方法促进健康行为改变
- 批准号:
10379780 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Local Forward Model Learning for Sample-Efficient Sequential Decision Making in Open World 3D Games
开放世界 3D 游戏中样本高效顺序决策的局部前向模型学习
- 批准号:
2441688 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
SCH: ChangeGradients: Promoting Adolescent Health Behavior Change with Clinically Integrated Sample-Efficient Policy Gradient Methods
SCH:ChangeGradients:通过临床整合的样本有效政策梯度方法促进青少年健康行为改变
- 批准号:
10737749 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
SCH: ChangeGradients: Promoting Adolescent Health Behavior Change with Clinically Integrated Sample-Efficient Policy Gradient Methods
SCH:ChangeGradients:通过临床整合的样本有效政策梯度方法促进青少年健康行为改变
- 批准号:
10532143 - 财政年份:2019
- 资助金额:
-- - 项目类别:
SCH: ChangeGradients: Promoting Adolescent Health Behavior Change with Clinically Integrated Sample-Efficient Policy Gradient Methods
SCH:ChangeGradients:通过临床整合的样本有效政策梯度方法促进青少年健康行为改变
- 批准号:
10307081 - 财政年份:2019
- 资助金额:
-- - 项目类别: