Dna Replication, Repair, And Mutagenesis In Eukaryotic A
真核生物 A 中的 DNA 复制、修复和突变
基本信息
- 批准号:6671878
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Lesions in DNA often pose considerable impediments to genome duplication. To overcome this block to DNA replication, cells utilize specialized accessory factors that allow synthesis of nascent DNA chains opposite the blocking lesion. Recent studies suggest that many of the key participants in translesion DNA synthesis are phylogenetically related DNA polymerases that have collectively been termed the Y-family of DNA polymerases.
In the past year, scientific studies within the section have focussed on understanding the molecular mechanisms of translesion replication in all three kingdoms of life: bacteria, archaea and eukaryotic cells. In E. coli, this process only occurs when UmuC physically interacts with UmuD? to form UmuD?2C, (polV). Because polV is a low-fidelity enzyme, its activities within the cell are strictly controlled. For example, the enzyme is greatly stimulated by interactions with the RecA protein. Interestingly, these studies suggest that two distinct biochemical modes of RecA binding are necessary for pol V-catalyzed translesion replication. One RecA mode is characterized by a strong stimulation in nucleotide incorporation either directly opposite a lesion or at undamaged template sites, but by the absence of lesion bypass. A separate RecA mode is necessary for translesion synthesis
Scientist within the section have recently identified and cloned a DinB homolog from the archaeon Sulfolobus solfataricus P2, called DNA polymerase IV (Dpo4). Characterization of the enzyme reveals that the protein possesses many biochemical properties similar to other DinB polymerases including a propensity to make frameshift mutations. S. solfataricus Dpo4 has been overproduced, purified and its structure has been solved by X-ray crystallography. Like all DNA polymerases characterized to date, the enzyme possesses a topology similar to a right hand with domains that resemble ?fingers?, a ?palm? and a ?thumb?. Dpo4 also possesses a unique domain called the ?little finger? that helps the enzyme bind to DNA. Interestingly, the active site of the enzyme is sufficiently large enough to accommodate significant structural rearrangements of the nascent primer terminus including primer-template misalignment and flipping of bases into the minor groove, so as to avoid the lesions in DNA.
Studies with human DNA polymerase iota, which was recently discovered by scientist in the section, revealed that in addition to exhibiting a remarkable template-dependent misincorporation spectrum on undamaged DNA in vitro, the enzyme is also highly error-prone when copying a variety of DNA lesions. An exception was at Benzo[a]pyrene diol epoxide adducts of deoxyadenosine, where the enzyme efficiently inserted the correct base, dTMP, opposite the adducted adensosine base. Further elongation was, however, limited and appears to be performed by the related Y-family polymerase, pol kappa. Based upon our in vitro observations, we hypothesize that pol iota and pol kappa act together to facilitate the error-free bypass of diol epoxide-adducted deoxyadenosine in vivo and in doing so, protect humans from the carcinogenic effects of exposure to Beno[a]pyrene diol epoxides.
We have also recently examined the sub-cellular localization of pol iota within a living human cell. These studies revealed that despite the fact that pol iota lacks an obvious nuclear localization signal, it is predominantly localized to the nucleus, where it associates with the cell?s normal replication machinery. Following DNA damage, pol iota accumulates into discrete foci at sites of stalled replication forks. Interestingly, the pattern of foci formation was identical to that previously reported for the related Y-family polymerase, pol eta, suggesting that damage-induced pol iota- and pol eta-foci formation is tightly coordinated within the cell. Using the yeast two-hybrid assay, in vitro ?pull-down? assays and Far western analysis, we discovered that pol eta and pol iota interact with each other. Our data suggest, therefore, that human pols eta and iota may coexist in a larger holoenzyme complex whereby their lesion-bypassing activities can be coordinated in response to DNA damage and that both enzymes may play a general role in maintaining genomic integrity, as well as participating in translesion replication.
DNA 损伤常常对基因组复制造成相当大的障碍。为了克服 DNA 复制的这种阻碍,细胞利用特殊的辅助因子来合成与阻碍病变相反的新生 DNA 链。最近的研究表明,跨损伤 DNA 合成的许多关键参与者是系统发育相关的 DNA 聚合酶,这些酶统称为 DNA 聚合酶 Y 家族。
在过去的一年中,该部门的科学研究重点是了解所有三个生命王国:细菌、古细菌和真核细胞中跨损伤复制的分子机制。在大肠杆菌中,这个过程仅在 UmuC 与 UmuD 物理相互作用时发生?形成UmuD?2C,(polV)。由于 polV 是一种低保真度酶,因此其在细胞内的活性受到严格控制。例如,与 RecA 蛋白的相互作用会极大地刺激该酶。有趣的是,这些研究表明 RecA 结合的两种不同生化模式对于 pol V 催化的跨损伤复制是必需的。一种 RecA 模式的特征是在病变正对面或未损坏的模板位点强烈刺激核苷酸掺入,但不存在病变旁路。跨损伤合成需要单独的 RecA 模式
该部门的科学家最近从古细菌 Sulfolobus solfataricus P2 中鉴定并克隆了 DinB 同源物,称为 DNA 聚合酶 IV (Dpo4)。该酶的表征表明,该蛋白质具有许多与其他 DinB 聚合酶相似的生化特性,包括产生移码突变的倾向。 S. solfataricus Dpo4 已被过量生产、纯化,并通过 X 射线晶体学解析了其结构。与迄今为止鉴定的所有 DNA 聚合酶一样,该酶具有类似于右手的拓扑结构,其结构域类似于“手指”、“手掌”。和一个“拇指”。 Dpo4 还拥有一个称为“小指”的独特结构域。帮助酶与 DNA 结合。有趣的是,该酶的活性位点足够大,足以容纳新生引物末端的显着结构重排,包括引物模板错位和碱基翻转到小沟中,从而避免 DNA 损伤。
该部分科学家最近发现的人类DNA聚合酶iota的研究表明,除了在体外对未损伤的DNA表现出显着的模板依赖性错误掺入谱外,该酶在复制各种DNA损伤时也非常容易出错。脱氧腺苷的苯并[a]芘二醇环氧化物加合物是一个例外,其中酶有效地插入正确的碱基 dTMP,与加合的腺苷碱基相对。然而,进一步的延伸受到限制,并且似乎是由相关的 Y 家族聚合酶 pol kappa 进行的。根据我们的体外观察,我们假设 pol iota 和 pol kappa 共同作用,促进体内二醇环氧化物加合脱氧腺苷的无差错旁路,并在此过程中保护人类免受暴露于苯并[a]芘二醇环氧化物的致癌作用。
我们最近还研究了 pol iota 在活人类细胞内的亚细胞定位。这些研究表明,尽管 pol iota 缺乏明显的核定位信号,但它主要定位于细胞核,与细胞的正常复制机制相关。 DNA 损伤后,pol iota 在停滞的复制叉位点积聚成离散的病灶。有趣的是,病灶形成的模式与之前报道的相关 Y 家族聚合酶 pol eta 的模式相同,表明损伤诱导的 pol iota 和 pol eta 病灶形成在细胞内紧密协调。使用酵母双杂交测定,体外“下拉”?分析和远西方分析,我们发现 pol eta 和 pol iota 相互作用。因此,我们的数据表明,人类 pols eta 和 iota 可能共存于一个更大的全酶复合物中,从而可以协调它们的损伤绕过活性以响应 DNA 损伤,并且这两种酶可能在维持基因组完整性以及参与跨损伤复制方面发挥一般作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROGER WOODGATE其他文献
ROGER WOODGATE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROGER WOODGATE', 18)}}的其他基金
DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells
真核和原核细胞中的 DNA 复制、修复和诱变
- 批准号:
10266476 - 财政年份:
- 资助金额:
-- - 项目类别:
DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells
真核和原核细胞中的 DNA 复制、修复和诱变
- 批准号:
9550317 - 财政年份:
- 资助金额:
-- - 项目类别:
DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells
真核和原核细胞中的 DNA 复制、修复和诱变
- 批准号:
8351143 - 财政年份:
- 资助金额:
-- - 项目类别:
DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells
真核和原核细胞中的 DNA 复制、修复和诱变
- 批准号:
8736845 - 财政年份:
- 资助金额:
-- - 项目类别:
DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells
真核和原核细胞中的 DNA 复制、修复和诱变
- 批准号:
10908165 - 财政年份:
- 资助金额:
-- - 项目类别:
DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells
真核和原核细胞中的 DNA 复制、修复和诱变
- 批准号:
8149277 - 财政年份:
- 资助金额:
-- - 项目类别:
DNA REPLICATION, REPAIR, AND MUTAGENESIS IN EUKARYOTIC AND PROKARYOTIC CELLS
真核和原核细胞中的 DNA 复制、修复和诱变
- 批准号:
6290230 - 财政年份:
- 资助金额:
-- - 项目类别:
DNA Replication, Repair, and Mutagenesis in Eukaryotic a
真核生物中的 DNA 复制、修复和突变
- 批准号:
6508761 - 财政年份:
- 资助金额:
-- - 项目类别:
DNA Replication, Repair, and Mutagenesis In Eukaryotic
真核生物中的 DNA 复制、修复和突变
- 批准号:
6992855 - 财政年份:
- 资助金额:
-- - 项目类别:
DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells
真核和原核细胞中的 DNA 复制、修复和诱变
- 批准号:
7968592 - 财政年份:
- 资助金额:
-- - 项目类别:
相似海外基金
Greatwall in replication stress/DNA damage responses and oral cancer resistance
长城在复制应激/DNA损伤反应和口腔癌抵抗中的作用
- 批准号:
10991546 - 财政年份:2024
- 资助金额:
-- - 项目类别:
The shielding role of the nuclear periphery against the genetic and non-genetic consequences of DNA damage (ChromoSENSOR)
核外围对 DNA 损伤的遗传和非遗传后果的屏蔽作用 (ChromoSENSOR)
- 批准号:
EP/Y027124/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Aspartate beta-hydroxylase and DNA damage in chronic liver diseases
慢性肝病中的天冬氨酸 β-羟化酶和 DNA 损伤
- 批准号:
10667881 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Role of DNA damage and cellular senescence in osteoarthritis pathophysiology
DNA 损伤和细胞衰老在骨关节炎病理生理学中的作用
- 批准号:
10801026 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Impact of ATR's role in translesion synthesis on prevention of DNA damage induced mutagenesis and chromosomal instability
ATR 在跨损伤合成中的作用对预防 DNA 损伤诱导的突变和染色体不稳定性的影响
- 批准号:
10634852 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The interface of transcription, DNA damage and epigenetics: A therapeutic vulnerability of the EWS-FLI1 transcription factor
转录、DNA 损伤和表观遗传学的界面:EWS-FLI1 转录因子的治疗脆弱性
- 批准号:
10718793 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Investigating metabolism and DNA damage repair in uropathogenic Escherichia coli fluoroquinolone persisters
研究泌尿道致病性大肠杆菌氟喹诺酮类持续存在的代谢和 DNA 损伤修复
- 批准号:
10747651 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Targeting the function of BRCA1 in the DNA damage response network.
靶向 DNA 损伤反应网络中 BRCA1 的功能。
- 批准号:
2879783 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Elucidation of the mechanism underlying cellular senescence and aging induced by the continuous DNA damage
阐明持续DNA损伤引起的细胞衰老和老化的机制
- 批准号:
22KJ0646 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Novel Roles of TAZ and YAP in DNA Damage Repair with 3D Genome Organization and the Therapeutic Resistance in Glioblastoma
TAZ 和 YAP 在 3D 基因组组织 DNA 损伤修复中的新作用以及胶质母细胞瘤的治疗耐药性
- 批准号:
10649830 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




