INVESTIGATIONS OF MULTI-VIEW CAD FOR MAMMOGRAPHY

乳腺 X 线摄影多视图 CAD 的研究

基本信息

  • 批准号:
    6628182
  • 负责人:
  • 金额:
    $ 28.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-02-01 至 2005-01-31
  • 项目状态:
    已结题

项目摘要

Over the past 15 years, considerable progress has been made in the development of computer-aided detection (CAD) of abnormalities in mammograms. Nevertheless, because of performance limitations of current CAD algorithms, the question of whether CAD provides a net benefit remains unresolved. In recent years, despite considerable effort by many groups, the rate of improvement in CAD performance has declined to the point that performance statistics seem to be approaching an asymptote, which is well below the performance of mammographers. The most likely reason for this is that essentially all current CAD implementations are founded on traditional methods of signal processing and pattern recognition and derive their performance by detecting features in a single image. These features are then classified by some inference mechanism. It is conceivable (probable) that most of the relevant physical features in single images have been identified and exploited to some extent. The hypothesis of this proposal is that performance limitations of current CAD, as indicated by the difference in performance between CAD and mammographers, result to a large extent from the failure of these algorithms to utilize data that can only be derived by a synergistic analysis of multiple images. Thus, it is the intent of this proposal to extend current CAD methodology to enable the extraction of information related to the spatial structure of a breast from ipsilateral views. Our preliminary results have established that despite compression-induced distortion, there are features that can be derived automatically from pairs of images and have been shown to provide information not obtainable from the independent analysis of single images. These multi-image-based features are partially independent of tissue distortion from breast compression during mammography. We will investigate and refine these and other features that can be identified. The purpose of this investigation is to fully exploit these kinds of features and optimize their contributions to a multi-image-based CAD algorithm.
在过去的15年中,在计算机辅助检测(CAD)乳房X线摄影异常方面取得了相当大的进展。 然而,由于当前CAD算法的性能限制,CAD是否提供净效益的问题仍未得到解决。 近年来,尽管许多团体做出了相当大的努力,但CAD性能的改善率已经下降到性能统计似乎接近渐近线的程度,这远低于乳房X线摄影师的性能。 最可能的原因是,基本上所有当前的CAD实现都是建立在传统的信号处理和模式识别方法上的,并通过检测单个图像中的特征来获得其性能。 这些功能,然后分类的一些推理机制。 可以想象(可能)的是,大多数相关的物理特征在单一的图像已被确定和利用到一定程度。该建议的假设是,当前CAD的性能限制,如CAD和乳房摄影师之间的性能差异所示,在很大程度上是由于这些算法未能利用只能通过多个图像的协同分析得出的数据。 因此,本提案的目的是扩展当前的CAD方法,以便能够从同侧视图中提取与乳房空间结构相关的信息。 我们的初步研究结果已经确定,尽管压缩引起的失真,有功能,可以自动从成对的图像,并已被证明提供的信息无法从单个图像的独立分析。这些基于多图像的功能部分独立于乳房X光检查期间乳房压缩造成的组织变形。我们将调查和完善这些和其他可以识别的功能。 本研究的目的是充分利用这些类型的功能,并优化其贡献的多图像为基础的CAD算法。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterization of radiologists' search strategies for lung nodule detection: slice-based versus volumetric displays.
放射科医生肺结节检测搜索策略的特征:基于切片与体积显示。
  • DOI:
    10.1007/s10278-007-9076-x
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Wang,XiaoHui;Durick,JanetE;Lu,Amy;Herbert,DavidL;Golla,SaraswathiK;Foley,Kristin;Piracha,CSamia;Shinde,DilipD;Shindel,BettyE;Fuhrman,CarlR;Britton,CynthiaA;Strollo,DianeC;Shang,SherryS;Lacomis,JoanM;Good,WalterF
  • 通讯作者:
    Good,WalterF
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WALTER F GOOD其他文献

WALTER F GOOD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WALTER F GOOD', 18)}}的其他基金

Dose Reduction and Performance Enhancement During DBT Screening
DBT 筛查期间的剂量减少和性能增强
  • 批准号:
    7998774
  • 财政年份:
    2010
  • 资助金额:
    $ 28.65万
  • 项目类别:
Optimizing MDCT display for detection and diagnosis of pulmonary embolism
优化 MDCT 显示以检测和诊断肺栓塞
  • 批准号:
    7568278
  • 财政年份:
    2007
  • 资助金额:
    $ 28.65万
  • 项目类别:
Optimizing MDCT display for detection and diagnosis of pulmonary embolism
优化 MDCT 显示以检测和诊断肺栓塞
  • 批准号:
    7755013
  • 财政年份:
    2007
  • 资助金额:
    $ 28.65万
  • 项目类别:
Optimizing MDCT display for detection and diagnosis of pulmonary embolism
优化 MDCT 显示以检测和诊断肺栓塞
  • 批准号:
    7327800
  • 财政年份:
    2007
  • 资助金额:
    $ 28.65万
  • 项目类别:
Optimizing MDCT display for detection and diagnosis of pulmonary embolism
优化 MDCT 显示以检测和诊断肺栓塞
  • 批准号:
    7196605
  • 财政年份:
    2007
  • 资助金额:
    $ 28.65万
  • 项目类别:
INVESTIGATIONS OF MULTI-VIEW CAD FOR MAMMOGRAPHY
乳腺 X 线摄影多视图 CAD 的研究
  • 批准号:
    6497530
  • 财政年份:
    2000
  • 资助金额:
    $ 28.65万
  • 项目类别:
INVESTIGATIONS OF MULTI-VIEW CAD FOR MAMMOGRAPHY
乳腺 X 线摄影多视图 CAD 的研究
  • 批准号:
    6042583
  • 财政年份:
    2000
  • 资助金额:
    $ 28.65万
  • 项目类别:
INVESTIGATIONS OF MULTI-VIEW CAD FOR MAMMOGRAPHY
乳腺 X 线摄影多视图 CAD 的研究
  • 批准号:
    6350355
  • 财政年份:
    2000
  • 资助金额:
    $ 28.65万
  • 项目类别:
NON ROC MEASURES FOR EVALUATING IMAGE COMPRESSION
用于评估图像压缩的非 ROC 测量
  • 批准号:
    2032396
  • 财政年份:
    1997
  • 资助金额:
    $ 28.65万
  • 项目类别:
NON ROC MEASURES FOR EVALUATING IMAGE COMPRESSION
用于评估图像压缩的非 ROC 测量
  • 批准号:
    2555456
  • 财政年份:
    1997
  • 资助金额:
    $ 28.65万
  • 项目类别:

相似海外基金

FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
  • 批准号:
    EP/Y036395/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Research Grant
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
  • 批准号:
    10764456
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
The IDeA State Consortium for a Clinical Research Resource Center: Increasing Clinical Trials in IDeA States through Communication of Opportunities, Effective Marketing, and WorkforceDevelopment
IDeA 州临床研究资源中心联盟:通过机会交流、有效营销和劳动力发展增加 IDeA 州的临床试验
  • 批准号:
    10715568
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
  • 批准号:
    10743328
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
Addressing Underperformance in Clinical Trial Enrollments: Development of a Clinical Trial Toolkit and Expansion of the Clinical Research Footprint
解决临床试验注册表现不佳的问题:开发临床试验工具包并扩大临床研究足迹
  • 批准号:
    10638813
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
Improving Multicultural Engagement in Clinical Research through Partnership with Federally Qualified Health Centers and Community Health Worker Programs
通过与联邦合格的健康中心和社区卫生工作者计划合作,改善临床研究中的多元文化参与
  • 批准号:
    10823828
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
  • 批准号:
    10828665
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
Promoting a Culture Of Innovation, Mentorship, Diversity and Opportunity in NCI Sponsored Clinical Research: NCI Research Specialist (Clinician Scientist) Award Application of Janice M. Mehnert, M.D.
在 NCI 资助的临床研究中促进创新、指导、多样性和机会文化:Janice M. Mehnert 医学博士的 NCI 研究专家(临床科学家)奖申请
  • 批准号:
    10721095
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
Clinical Research Center for REstoration of NEural-based Function in the Real World (RENEW)
现实世界神经功能恢复临床研究中心 (RENEW)
  • 批准号:
    10795328
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
Clinical Research and Academic Success in Obstetrics & Gynecology
产科临床研究和学术成就
  • 批准号:
    10828252
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了