Bayesian Nonparametric Methods for Aggregated and Multivariate Outputs

用于聚合和多元输出的贝叶斯非参数方法

基本信息

  • 批准号:
    2283505
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

This project investigates 2 types of situations under data-scarce labelled data that are expensive to obtain, situations which are problems that occur in many environmental and social sciences problems. We aim to develop novel methods that tackle these situations using flexible proxy models that encode prior beliefs and interpretable uncertainty quantifications. This project falls within the EPSRC Mathematical Sciences research area and is partly funded by and in collaboration with Cervest Limited, an artificial intelligence start-up focusing on Earth Science AI, and Imperial College London. This collaboration between industry and academia will allow our research to have access to a wide array of Earth observation datasets from the industry as well as for the industry to gain access to novel methodologies for their own work. The first part involving aggregated outputs address the situation where we typically observe or must average out quantities over large groups of individuals or geographical areas. An important application where this type of problem occurs is in computing the average treatment effect of administering a pharmaceutical or policy intervention. When labelled data is scarce, this type of problem is even more complex. For instance, how do we model crop yields over a large geographical region when we only know what the yield is for the entire region? The second part of the project involves modelling multiple quantities, such as precipitation and temperature, jointly in a way that exploits their inter-dependence. Again, when labelled data is scarce modelling multiple quantities can allow for additional signals to be extracted. To capture complex interactions between covariates and outputs, nonparametric methods, ones that assume infinitely many model parameters such as Gaussian processes (GP), provide a flexible way for encoding prior beliefs, and there is also a rich literature on using GPs for label-scarce and feature-rich situations (Law et al. (2018); Hamelijnck et al. (2019)). GPs encode prior beliefs using normal distributions and can also give uncertainty quantification, which is highly desirable for situations when this is important. Recently, tree-based models (Chipman et al. (2010); Lakshminarayanan et al. (2016)), where the prior belief is broken down into subgroups of individuals or subregions, have been of interest to the machine learning community, yielding highly competitive results to GPs. Like GPs, tree-based models also provide a flexible nonparametric model that can provide uncertainty quantification, but properties of tree-based priors have yet to have been fully exploited for more complex applications. We hope to work on the development of novel nonparametric methodologies as solutions for our project aims. We will first develop novel nonparametric modelling approaches for applications that involve aggregated quantities of interest and outputs. We will then work on developing flexible models for multiple outputs with broad applications for environmental sciences in mind. References:Chipman, H.A., George, E.I. and McCulloch, R.E., 2010. BART: Bayesian additive regression trees. The Annals of Applied Statistics, 4(1), pp.266-298. Hamelijnck, O., Damoulas, T., Wang, K. and Girolami, M., 2019. Multi-resolution multi-task Gaussian processes. In Advances in Neural Information Processing Systems (pp. 14025-14035). Lakshminarayanan, B., Roy, D.M. and Teh, Y.W., 2016, May. Mondrian forests for large-scale regression when uncertainty matters. In Artificial Intelligence and Statistics (pp. 1478-1487). Law, H.C., Sejdinovic, D., Cameron, E., Lucas, T., Flaxman, S., Battle, K. and Fukumizu, K., 2018. Variational learning on aggregate outputs with Gaussian processes. In Advances in Neural Information Processing Systems (pp. 6081-6091).
该项目研究了数据稀缺且获取成本昂贵的标记数据下的两种情况,这些情况是许多环境和社会科学问题中出现的问题。我们的目标是开发新的方法来解决这些情况,使用灵活的代理模型来编码先验信念和可解释的不确定性量化。该项目属于 EPSRC 数学科学研究领域,部分由 Cervest Limited(一家专注于地球科学 AI 的人工智能初创公司)和伦敦帝国学院资助并与之合作。工业界和学术界之间的这种合作将使我们的研究能够访问来自工业界的各种地球观测数据集,并使工业界能够为自己的工作获得新颖的方法。第一部分涉及汇总产出,解决了我们通常观察或必须对大量个人或地理区域的数量进行平均的情况。发生此类问题的一个重要应用是计算药物或政策干预的平均治疗效果。当标记数据稀缺时,此类问题就更加复杂。例如,当我们只知道整个地区的产量时,如何对一个大地理区域的农作物产量进行建模?该项目的第二部分涉及对多个量(例如降水量和温度)进行联合建模,以利用它们的相互依赖性。同样,当标记数据稀缺时,对多个量进行建模可以允许提取额外的信号。为了捕获协变量和输出之间的复杂相互作用,非参数方法(假设无限多个模型参数,例如高斯过程(GP))提供了一种灵活的方式来编码先验信念,并且还有大量关于在标签稀缺和特征丰富的情况下使用 GP 的文献(Law 等人(2018);Hamelijnck 等人(2019))。 GP 使用正态分布对先验信念进行编码,并且还可以给出不确定性量化,这对于非常重要的情况非常理想。最近,基于树的模型(Chipman 等人(2010);Lakshminarayanan 等人(2016))将先验信念分解为个体或子区域的子组,引起了机器学习界的兴趣,为 GP 带来了极具竞争力的结果。与 GP 一样,基于树的模型也提供了灵活的非参数模型,可以提供不确定性量化,但基于树的先验的属性尚未充分利用于更复杂的应用程序。我们希望致力于开发新颖的非参数方法作为我们项目目标的解决方案。我们将首先为涉及感兴趣和输出的聚合数量的应用程序开发新颖的非参数建模方法。然后,我们将致力于开发多种输出的灵活模型,并考虑到环境科学的广泛应用。参考文献:Chipman, H.A.、George, E.I.和 McCulloch, R.E.,2010。BART:贝叶斯加性回归树。 《应用统计年鉴》,4(1),第 266-298 页。 Hamelijnck, O.、Damoulas, T.、Wang, K. 和 Girolami, M.,2019。多分辨率多任务高斯过程。神经信息处理系统的进展(第 14025-14035 页)。拉克什米纳拉亚南 (Lakshminarayanan),B.,罗伊 (Roy),D.M.和 Teh, Y.W.,2016 年 5 月。当不确定性很重要时,蒙德里安森林可以进行大规模回归。人工智能和统计(第 1478-1487 页)。 Law, H.C.、Sejdinovic, D.、Cameron, E.、Lucas, T.、Flaxman, S.、Battle, K. 和 Fukumizu, K.,2018。高斯过程聚合输出的变分学习。神经信息处理系统的进展(第 6081-6091 页)。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Markovian Gaussian Process Variational Autoencoders
  • DOI:
    10.48550/arxiv.2207.05543
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harrison Zhu;Carles Balsells Rodas;Yingzhen Li
  • 通讯作者:
    Harrison Zhu;Carles Balsells Rodas;Yingzhen Li
Bayesian Probabilistic Numerical Integration with Tree-Based Models
贝叶斯概率数值积分与基于树的模型
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhu H
  • 通讯作者:
    Zhu H
Grassmann Stein Variational Gradient Descent
  • DOI:
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xingtu Liu;Harrison Zhu;Jean-Francois Ton;George Wynne;A. Duncan
  • 通讯作者:
    Xingtu Liu;Harrison Zhu;Jean-Francois Ton;George Wynne;A. Duncan
Convolutional Neural Processes for Inpainting Satellite Images
  • DOI:
    10.48550/arxiv.2205.12407
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Pondaven;M. Bakler;D. Guo;Hamzah Hashim;Martin Ignatov;Harrison Zhu
  • 通讯作者:
    Alexander Pondaven;M. Bakler;D. Guo;Hamzah Hashim;Martin Ignatov;Harrison Zhu
Aggregated Gaussian Processes with Multiresolution Earth Observation Covariates
具有多分辨率地球观测协变量的聚合高斯过程
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhu H
  • 通讯作者:
    Zhu H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Nonparametric Bayesian Methods for Joint Analysis of Recurrent Events and Survival Time
用于重复事件和生存时间联合分析的非参数贝叶斯方法
  • 批准号:
    2015428
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Bayesian Nonparametric Modeling and Inference Methods for Point Processes
点过程的贝叶斯非参数建模和推理方法
  • 批准号:
    1950902
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Advances in Bayesian Nonparametric Methods for Jointly Modeling Multiple Data Sets
联合建模多个数据集的贝叶斯非参数方法的进展
  • 批准号:
    2013930
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CIF: Small: Dynamic Networks: Learning, Inference, and Prediction with Nonparametric Bayesian Methods
CIF:小型:动态网络:使用非参数贝叶斯方法进行学习、推理和预测
  • 批准号:
    1618999
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Bayesian nonparametric methods for spectral analysis of complex brain signals
用于复杂脑信号频谱分析的贝叶斯非参数方法
  • 批准号:
    1407838
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Application of Nonparametric Bayesian Methods to Distributional Learning
非参数贝叶斯方法在分布式学习中的应用
  • 批准号:
    26730123
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Extension of nonparametric Bayesian methods to semiparametric models and its applications
非参数贝叶斯方法向半参数模型的推广及其应用
  • 批准号:
    25280083
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CBMS Regional Conference in the Mathematical Sciences - Bayesian Nonparametric Statistical Methods: Theory and Applications - Summer 2010
CBMS 数学科学区域会议 - 贝叶斯非参数统计方法:理论与应用 - 2010 年夏季
  • 批准号:
    0938769
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Bayesian Nonparametric Point Processes: New Methods and Applications to Extreme Value Analysis
贝叶斯非参数点过程:极值分析的新方法和应用
  • 批准号:
    1024484
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research on Bayesian Nonparametric Methods for Spatial and Spatiotemporal Data
时空数据贝叶斯非参数方法的协作研究
  • 批准号:
    0504953
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了