Bayesian nonparametric methods for spectral analysis of complex brain signals
用于复杂脑信号频谱分析的贝叶斯非参数方法
基本信息
- 批准号:1407838
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complex multiple time series are often recorded in several applied areas of research such as neuroscience, environmetrics, and econometrics. This project develops Bayesian nonparametric methods and related computational tools for frequency-domain analysis of multiple time series. In particular, the statistical approaches that will be developed in this project are motivated by the need to analyze brain signals recorded in clinical and non-clinical studies including electroencephalograms, fMRI data, and magnetoencephalograms.A novel and flexible mixture modeling framework will be used to represent the spectral characteristics of multiple time series. Computationally efficient algorithms will be implemented, tested and used to analyze complex and large-dimensional brain signals. These algorithms will make use of a variety of computational methods for inference in Bayesian nonparametric models. The models and methods that will be developed have the following key features: (i) they will provide flexible representations of the spectral densities of multiple signals as well as computational feasibility (ii) they will allow researchers to investigate clustering patterns of multiple time series with similar spectral characteristics, and (iii) they will incorporate hierarchical settings that can appropriately accommodate neuroscience data sets involving multiple trials, multiple subjects and/or relevant covariates. The research project has the potential of impacting data-intensive neuroscience research that requires the analysis of several complex brain signals.
复杂的多时间序列经常被记录在神经科学、环境计量学和计量经济学等几个应用研究领域。该项目开发了用于多时间序列频域分析的贝叶斯非参数方法和相关计算工具。特别是,本项目将开发的统计方法是为了分析临床和非临床研究中记录的脑信号,包括脑电、fMRI数据和脑磁图。将使用一个新的和灵活的混合建模框架来表示多个时间序列的频谱特征。计算效率高的算法将被实施、测试并用于分析复杂和大维度的大脑信号。这些算法将利用各种计算方法在贝叶斯非参数模型中进行推理。将开发的模型和方法具有以下主要特点:(I)它们将提供多种信号的光谱密度的灵活表示以及计算的可行性;(Ii)它们将使研究人员能够研究具有相似光谱特征的多个时间序列的聚集模式;以及(Iii)它们将纳入能够适当地适应涉及多个试验、多个对象和/或相关协变量的神经科学数据集的分层设置。该研究项目有可能影响数据密集型神经科学研究,这些研究需要分析几个复杂的大脑信号。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raquel Prado其他文献
Bayesian Forecasting and Dynamic Models
- DOI:
10.1007/b98971 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Raquel Prado - 通讯作者:
Raquel Prado
Characterisation of bark of six species from mixed Atlantic forest
- DOI:
10.1016/j.indcrop.2019.05.033 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Leyre Sillero;Raquel Prado;Maria Angeles Andrés;Jalel Labidi - 通讯作者:
Jalel Labidi
Screen Magnification for Readers with Low Vision: A Study on Usability and Performance
低视力读者的屏幕放大率:可用性和性能研究
- DOI:
10.1145/3597638.3608383 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Meini Tang;R. Manduchi;Susana T L Chung;Raquel Prado - 通讯作者:
Raquel Prado
Raquel Prado的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raquel Prado', 18)}}的其他基金
CBMS Conference: Bayesian Forecasting and Dynamic Models
CBMS 会议:贝叶斯预测和动态模型
- 批准号:
1933542 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Statistical Approaches for Complex Multi-Dimensional Data
复杂多维数据的统计方法
- 批准号:
1853210 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian State-Space Models for Behavioral Time Series Data
合作研究:行为时间序列数据的贝叶斯状态空间模型
- 批准号:
1461497 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Models and Methods for Nonstationary Behavioral Time Series
合作研究:非平稳行为时间序列的模型和方法
- 批准号:
1060911 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
S-STATSMODEL: Scholarships in Statistics and Stochastic Modeling
S-STATSMODEL:统计和随机建模奖学金
- 批准号:
0849831 - 财政年份:2009
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似国自然基金
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Nonparametric Bayesian Methods for Joint Analysis of Recurrent Events and Survival Time
用于重复事件和生存时间联合分析的非参数贝叶斯方法
- 批准号:
2015428 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Bayesian Nonparametric Modeling and Inference Methods for Point Processes
点过程的贝叶斯非参数建模和推理方法
- 批准号:
1950902 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Advances in Bayesian Nonparametric Methods for Jointly Modeling Multiple Data Sets
联合建模多个数据集的贝叶斯非参数方法的进展
- 批准号:
2013930 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
- 批准号:
10294246 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
- 批准号:
10524774 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
- 批准号:
10059253 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Bayesian Nonparametric Methods for Aggregated and Multivariate Outputs
用于聚合和多元输出的贝叶斯非参数方法
- 批准号:
2283505 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Studentship
CIF: Small: Dynamic Networks: Learning, Inference, and Prediction with Nonparametric Bayesian Methods
CIF:小型:动态网络:使用非参数贝叶斯方法进行学习、推理和预测
- 批准号:
1618999 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Application of Nonparametric Bayesian Methods to Distributional Learning
非参数贝叶斯方法在分布式学习中的应用
- 批准号:
26730123 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Extension of nonparametric Bayesian methods to semiparametric models and its applications
非参数贝叶斯方法向半参数模型的推广及其应用
- 批准号:
25280083 - 财政年份:2013
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)