Geometry and computability in low-dimensional topology and group theory.
低维拓扑和群论中的几何和可计算性。
基本信息
- 批准号:2283616
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the proof of Thurston's Geometrisation Conjecture, 3-manifolds are in some sense classified. However, the non-constructive nature of the proof gives no direct method for deciding whether two given 3-manifolds are the same. In this project, Ascari will examine these computational questions. He will approach it using several techniques. On the one hand, topological tools such as hierarchies will prove to be useful. On the other hand, algebraic approaches, such as the use of the profinite completion of the fundamental group, will also be fruitful. Overlying both these approaches is the pervasive role of hyperbolic geometry, which is an area of expertise of Ascari. A field where these questions are particularly of interest is knot theory, which Ascari will also examine. We now explain these approaches in a bit more detail. The profinite completion of a finite generated group is a compact topological group that is the inverse limit of its finite quotients. It is conjectured that the profinite completion of the fundamental group of a hyperbolic 3-manifold should completely determine the manifold. If true, this would provide a new solution to the homeomorphism problem for 3-manifolds. Both of Dario's supervisors have expertise in this area. Lackenby has used profinite completions to study finite-sheeted covers of 3-manifolds, and Bridson has recently discovered the first example of a hyperbolic 3-manifold that is determined by its profinite completion. In fact, it is determined by its profinite completion among all finitely generated residually finite groups. A hierarchy for a 3-manifold is a finite sequence of decompositions along incompressible surfaces that cuts the manifold into 3-balls. Haken showed that many 3-manifolds have a hierarchy; in particular, all knot complements have one. He used these to produce the first solution to the equivalence problem for knots and links. Lackenby has used hierarchies to produce quantitative bounds on the computational complexity of this and related problems. For example, he showed that the problem of recognising the unknot lies in the complexity class co-NP. In his project, Dario will use these methods to analyse more complicated knots. This will tie in with the study of profinite completions, since it seems likely that a proof of profinite rigidity will need to use incompressible surfaces in some way. This project will draw on many different areas of expertise of Dario's supervisors Lackenby and Bridson. It will require sophisticated methods in low-dimensional topology, hyperbolic geometry and geometric group theory. The project lies in the EPSCR Research Areas Geometry & Topology and Algebra.
通过对Thurston几何化猜想的证明,在某种意义上对三维流形进行了分类。然而,证明的非建设性性质并没有直接的方法来决定两个给定的三维流形是否相同。在这个项目中,阿斯卡里将研究这些计算问题。他将使用几种技术来处理它。一方面,拓扑工具,如层次结构将被证明是有用的。另一方面,代数方法,如使用基本群的profinite完成,也将是富有成效的。覆盖在这两种方法之上的是双曲几何的普遍作用,这是阿斯卡里的一个专业领域。一个领域,这些问题是特别感兴趣的是纽结理论,其中阿斯卡里也将审查。我们现在更详细地解释这些方法。有限生成群的profinite完备化是一个紧拓扑群,它是它的有限子群的逆极限。证明了双曲三维流形的基本群的有限完备化应完全决定该流形。如果是真的,这将为三维流形的同胚问题提供一个新的解决方案。达里奥的两个上司都有这方面的专业知识。Lackenby使用profinite完备化来研究3-流形的有限单覆盖,而Bridson最近发现了由其profinite完备化确定的双曲3-流形的第一个例子。事实上,它是由它在所有的有限生成的剩余有限群中的profinite完备化决定的。一个3-流形的层次是一个有限序列的分解沿着不可压缩的表面,切割成3-球的流形。哈肯证明了许多三维流形都有一个层次,特别是所有的纽结补都有一个层次。他用这些产生的第一个解决方案的等价问题的结和链接。Lackenby使用层次结构来产生这个和相关问题的计算复杂性的定量界限。例如,他证明了识别unknot的问题在于复杂性类co-NP。在他的项目中,Dario将使用这些方法来分析更复杂的结。这将与profinite完备化的研究联系起来,因为profinite刚性的证明似乎需要以某种方式使用不可压缩曲面。该项目将借鉴达里奥的主管Lackenby和Bridson的许多不同领域的专业知识。这将需要复杂的方法在低维拓扑,双曲几何和几何群论。该项目位于EPSCR研究领域几何与拓扑和代数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
- 批准号:
2404023 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
- 批准号:
2348891 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Computable model theory and invariant descriptive computability theory
可计算模型理论和不变描述可计算性理论
- 批准号:
2348792 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Descriptive Set Theory and Computability
描述性集合论和可计算性
- 批准号:
2348208 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
New Developments in the Philosophical Foundations of Computability Theory
可计算性理论哲学基础的新进展
- 批准号:
22KF0258 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152098 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152095 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152182 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152262 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
RGPIN-2018-03982 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




