Multi-Modal Signal Processing On Non-Euclidean Domains
非欧几里得域上的多模态信号处理
基本信息
- 批准号:2283930
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the world enters the era of big data, multi-dimensional data are being generated on an unprecedented level, which are so large and complex that cannot be processed using a standard computer. In addition to the sheer volume of information, new complex sets of data, such as social networks and protein function networks, are stored in irregular data structures such as graphs, which cannot be processed using classical methods. Modern data problems require solutions that can extract insights from an overwhelming sea of information, which should be done in a robust, efficient, and reliable manner. However, this poses significant challenges for classical signal processing and machine learning techniques, which have been designed to work with small-scale data problems defined on regular structures such as image and speech.To address the challenges of big data, this project will explore and develop efficient data analytics methods to extract information from high-dimensional data defined on irregular structures. This is in line with the EPSRC research area of Artificial Intelligence and Digital Signal Processing, under the umbrella of the strategic theme of Information and Communication Technology. Specifically, the project will use tools from the emerging fields of Tensor Decomposition (TD) and Graph Signal Processing (GSP). Tensors are multi-dimensional generalization of vectors and matrices, while TD aims to represent large tensors efficiently using smaller core tensors, hence bypassing many computational problems inherent to the nature of big data. GSP on the other hand aims to extract insights from signals defined on top of graphs, which is done by considering the underlying structure of the graph. TD and GSP are two fields that have recently gained a lot of tractions, but not much has been done in terms of merging the two disciplines. For instance, most TD applications ignore the irregular data domain, while most GSP applications don't consider multi-dimensional tensors defined on top of graphs. Given the relevance of both fields, it is important to develop unified techniques that can efficiently process high dimensional data by leveraging the underlying data structure. This offers promising applications in many areas, such as bioinformatics and finance, where the interaction between high-dimensional data heavily depends on the underlaying network.
随着世界进入大数据时代,多维度的数据正在以前所未有的水平产生,这些数据非常庞大和复杂,无法用标准的计算机处理。除了大量的信息,新的复杂数据集,如社会网络和蛋白质函数网络,存储在不规则的数据结构中,如图,这是不能用经典方法处理的。现代数据问题需要能够从海量信息中提取见解的解决方案,这应该以稳健、高效和可靠的方式完成。然而,这对经典的信号处理和机器学习技术提出了重大挑战,这些技术被设计用于处理在规则结构(如图像和语音)上定义的小规模数据问题。为了应对大数据的挑战,该项目将探索和开发有效的数据分析方法,从不规则结构上定义的高维数据中提取信息。这与EPSRC在信息与通信技术战略主题下的人工智能和数字信号处理研究领域相一致。具体来说,该项目将使用新兴领域张量分解(TD)和图信号处理(GSP)的工具。张量是向量和矩阵的多维泛化,而TD旨在使用较小的核心张量有效地表示大张量,从而绕过了大数据本质固有的许多计算问题。另一方面,GSP旨在从定义在图顶部的信号中提取洞察力,这是通过考虑图的底层结构来完成的。TD和GSP是最近获得了很多关注的两个领域,但在合并这两个学科方面做得并不多。例如,大多数TD应用程序忽略不规则数据域,而大多数GSP应用程序不考虑在图上定义的多维张量。考虑到这两个领域的相关性,开发能够利用底层数据结构有效处理高维数据的统一技术是很重要的。这在许多领域提供了有前途的应用,如生物信息学和金融,其中高维数据之间的交互严重依赖于底层网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
- 批准号:
2336525 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
MUSE: Multi-Modal Software Evolution
MUSE:多模式软件演进
- 批准号:
EP/W015927/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
High speed multi modal in-situ Transmission Electron Microscopy platform
高速多模态原位透射电子显微镜平台
- 批准号:
LE240100060 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Multi-scale, multi-modal X-ray imaging using speckle
使用散斑的多尺度、多模态 X 射线成像
- 批准号:
DE220101402 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Multi-modal electron microscopy of 3D racetrack memory
3D 赛道记忆的多模态电子显微镜
- 批准号:
EP/X025632/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
- 批准号:
2401047 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
FDG-PET in combination with proton (1H) and sodium (23Na) MRI: a di-modal metabolic imaging approach
FDG-PET 结合质子 (1H) 和钠 (23Na) MRI:双模态代谢成像方法
- 批准号:
24K15805 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enhancing STEM Success: A Multi-modal Investigating of Spatial Reasoning and Training in Undergraduate Education
促进 STEM 成功:本科教育空间推理和培训的多模式研究
- 批准号:
2300785 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




