Scaling limits for random walks in random conductances

随机电导中随机游走的缩放限制

基本信息

  • 批准号:
    2284054
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Random walks on random conductances form a well-established class of motions in random environment that has already been investigated in depth. In the case where the conductances are bounded away from zero and infinity, it is well-known that the re-scaled walk converges to a Brownian motion. Out of this regime this model showcases "trapping phenomena", that is, a slow down in the walk due to the presence of small areas in the environment that behave atypically. In this case, the usual invariance principle does not hold anymore. Although this mechanism is now well identified, it is challenging to obtain, in the trapped regimes, functional scaling limits and other fine results (e.g. aging, quenched convergence). Carlo's project explores trapping phenomena for random walks in random environments and on random graphs. In particular, Carlo will investigate the relationship between the Bouchaud's Trap Model and random walks on random conductances in the trapped regimes.The research work will start with an attempt to modify the existing result for the biased random walk in random conductances in dimension one from annealed to quenched, following the footsteps of the suggestion given by the authors of the first result (Q. Berger and M. Salvi, 2020). This means proving that, for almost every realisation of the environment, the law of the walk, conditional on the environment, converges to some (known) distribution. The second project will involve the unbiased walk in dimension one. Here, the research hypothesis is that the scaling factor and limit are equal to the ones that appear in the corresponding unbiased Bouchaud's Trap Model and that have been introduced by Fontes, Isopi and Newman in 2002. The analyses of these two models differ substantially depending on the presence or absence of a direction for the walk. In particular, intuitively, the biased walk does not backtrack "too much" eventually, making the number of visits to each trap finite. This fact is heavily used in the analysis of the biased walk and it is evidently not true for the unbiased case, therefore the techniques used for one do not translate to the other seamlessly. This research is almost entirely theoretic and we do not expect to perform any data analysis, even simulations of these types of model have very limited usefulness and could eventually be performed just for explanatory purposes.
随机电导上的随机游动形成了随机环境中的一类已被深入研究的运动。在电导远离零和无穷大的情况下,众所周知,重新缩放的行走收敛到布朗运动。在这种状态下,该模型展示了“捕获现象”,即由于环境中存在小区域而导致行走减慢。在这种情况下,通常的不变性原理不再成立。虽然这种机制现在已经被很好地识别,但在捕获机制中获得功能缩放限制和其他精细结果(例如老化,淬火收敛)是具有挑战性的。Carlo的项目探索了随机环境和随机图中随机游动的捕获现象。特别地,Carlo将研究布绍陷阱模型和陷阱区中随机电导的随机游走之间的关系。研究工作将从尝试修改一维随机电导中有偏随机游走的现有结果开始,从退火到淬火,遵循第一个结果(Q. Berger和M. Salvi,2020)。这意味着证明,对于几乎每一个环境的实现,行走定律,以环境为条件,收敛于某个(已知的)分布。第二个项目将涉及一维中的无偏行走。在这里,研究假设是,比例因子和限制是相等的,出现在相应的无偏Bouchaud的陷阱模型,并已介绍了Fontes,Isopi和纽曼在2002年。这两个模型的分析有很大的不同,这取决于步行方向的存在或不存在。特别是,直觉上,有偏行走最终不会回溯“太多”,使得访问每个陷阱的次数有限。这一事实在有偏行走的分析中被大量使用,显然对于无偏情况并不正确,因此用于一种情况的技术不能无缝地转换到另一种情况。这项研究几乎完全是理论性的,我们不希望进行任何数据分析,即使是这些类型的模型的模拟也非常有限,最终可能只是为了解释目的而进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scaling limits of growth in random media
扩大随机介质的增长极限
  • 批准号:
    2246576
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Scaling limits for random processes
随机过程的缩放限制
  • 批准号:
    2597633
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Large symmetrised systems of interacting Brownian bridges and random interlacements and their scaling limits
相互作用的布朗桥和随机交错的大型对称系统及其尺度限制
  • 批准号:
    2813903
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Scaling Limits and Phase Transitions in Spatial Random Processes
空间随机过程中的尺度限制和相变
  • 批准号:
    1954343
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Scaling limits of random particle aggregation models
随机粒子聚集模型的尺度限制
  • 批准号:
    2434393
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Scaling limits of critical directed random graphs
临界有向随机图的缩放限制
  • 批准号:
    2272117
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Scaling Limits of Growth in Random Media
扩大随机介质的生长极限
  • 批准号:
    1811143
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Scaling limits of random growth processes
随机增长过程的尺度限制
  • 批准号:
    1943420
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
Scaling limits and local weak limits of random structures
随机结构的尺度极限和局部弱极限
  • 批准号:
    315422461
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了