Scaling Limits and Phase Transitions in Spatial Random Processes
空间随机过程中的尺度限制和相变
基本信息
- 批准号:1954343
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is devoted to the study of various aspects of phase transitions and critical phenomena. These originate in physics but the methods of study require significant input from mathematics. A common feature of the problems discussed in the project is that they involve systems of many constituents. It is here where probability theory offers a number of indispensable tools. The specific questions are typically set in the context of a complex microscopic system defined in terms of mathematical concepts such as random walks or random fields. The aim is to show that, as the system size increases, a new structure emerges. This structure, sometimes called a scaling limit, often admits an independent characterization that enables its study using the methods of mathematical analysis. Particular attention is paid to the phenomenon of universality, which refers to independence of the scaling limit to the details of the underlying microscopic system. Understanding universality in its mathematically precise form is one of the overarching goals of the project. The project provides research training opportunities for graduate students. The project is divided roughly into two parts. The first one is focused on the study of extremal problems for spatial random fields. Drawing on earlier success of the analysis of the two-dimensional Gaussian Free Field, the aim is to establish universality of the conclusions for other examples of logarithmically-correlated fields such as the random walk local time or the discrete-Gaussian model below the Kosterlitz-Thouless transition. The interest here is on both the phenomena and the development of techniques required to control such systems. The second part of the project is devoted to the analysis of phase transitions in a number of systems of interest. One of these is a system of interacting bosons, which is proposed to be analyzed using a random-cycle representation. The aim here is to give a rigorous proof of Bose-Einstein condensation at positive temperatures in suitable scaling limits. Another model to be studied is that of interacting random walks; the aim here is to describe the limit shape using a variational problem for the walk range. The project naturally draws on recent advances in the field, some due to the PI. The techniques involved span a number of topics in probability and analysis; for instance, extreme order statistics, homogenization theory, permutation statistics, fixed point theory. A number of problems have been designed with the aim to include graduate students and postdocs in research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目致力于相变和临界现象的各个方面的研究。这些起源于物理学,但研究方法需要数学的重要投入。项目中讨论的问题的一个共同特点是,它们涉及许多组成部分的系统。正是在这里,概率论提供了许多不可或缺的工具。具体的问题通常是在一个复杂的微观系统的背景下设置的,该系统是根据数学概念定义的,如随机游走或随机场。其目的是表明,随着系统规模的增加,一个新的结构出现。这种结构,有时被称为标度极限,往往承认一个独立的表征,使其研究使用数学分析的方法。特别注意的现象的普遍性,这是指独立的标度限制的细节的底层微观系统。以数学精确的形式理解普遍性是该项目的首要目标之一。该项目为研究生提供研究培训机会。该项目大致分为两个部分。第一部分主要研究空间随机场的极值问题。借鉴早期成功的二维高斯自由场的分析,目的是建立普遍性的结论的其他例子的物理相关的领域,如随机游走本地时间或离散高斯模型下的Kosterlitz无边界过渡。这里的兴趣是对现象和控制这种系统所需的技术的发展。该项目的第二部分致力于分析一些感兴趣的系统中的相变。其中之一是一个系统的相互作用玻色子,这是建议使用随机循环表示进行分析。这里的目的是给出一个严格的证明玻色-爱因斯坦凝聚在正温度下在适当的缩放限制。另一个要研究的模型是相互作用的随机游动;这里的目的是使用变分问题的行走范围来描述极限形状。该项目自然借鉴了该领域的最新进展,其中一些是由于PI。所涉及的技术跨越了概率和分析中的许多主题;例如,极端顺序统计,均匀化理论,排列统计,不动点理论。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marek Biskup其他文献
On support sets of the critical Liouville Quantum Gravity
关于临界刘维尔量子引力的支持集
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Marek Biskup;Stephan Gufler;O. Louidor - 通讯作者:
O. Louidor
Long-time tails in the parabolic Anderson model with bounded potential
具有有限潜力的抛物线安德森模型中的长期尾部
- DOI:
10.1214/aop/1008956688 - 发表时间:
2000 - 期刊:
- 影响因子:2.3
- 作者:
Marek Biskup;Wolfgang Koenig - 通讯作者:
Wolfgang Koenig
Eigenvalue Fluctuations for Lattice Anderson Hamiltonians
格子安德森哈密顿量的特征值涨落
- DOI:
10.1137/14097389x - 发表时间:
2016 - 期刊:
- 影响因子:2
- 作者:
Marek Biskup;Ryoki Fukushima;and Wolfgang Koenig - 通讯作者:
and Wolfgang Koenig
Parallel interactive data analysis with PROOF
使用 PROOF 进行并行交互式数据分析
- DOI:
10.1016/j.nima.2005.11.100 - 发表时间:
2006 - 期刊:
- 影响因子:1.4
- 作者:
Maarten Ballintijn;Marek Biskup;R. Brun;P. Canal;D. Feichtinger;G. Ganis;Günter Kickinger;A. Peters;F. Rademakers - 通讯作者:
F. Rademakers
A Central Limit Theorem for the Effective Conductance: Linear Boundary Data and Small Ellipticity Contrasts
有效电导的中心极限定理:线性边界数据和小椭圆率对比
- DOI:
10.1007/s00220-014-2024-y - 发表时间:
2012 - 期刊:
- 影响因子:2.4
- 作者:
Marek Biskup;Michele Salvi;T. Wolff - 通讯作者:
T. Wolff
Marek Biskup的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marek Biskup', 18)}}的其他基金
Interacting Particle Systems, Statistical Mechanics, and Related Topics
相互作用的粒子系统、统计力学及相关主题
- 批准号:
1850957 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Large Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大尺度现象
- 批准号:
1712632 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Large Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大尺度现象
- 批准号:
1407558 - 财政年份:2014
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Travel support for participation at the 6th Prague Summer School on Mathematical Statistical Physics
参加第六届布拉格数理统计物理暑期学校的差旅支持
- 批准号:
1144348 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Large scale phenomena in models of statistical mechanics
统计力学模型中的大规模现象
- 批准号:
1106850 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Large-Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大规模现象
- 批准号:
0949250 - 财政年份:2009
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Large-Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大规模现象
- 批准号:
0806198 - 财政年份:2008
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Large-Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大规模现象
- 批准号:
0505356 - 财政年份:2005
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
相似海外基金
Breakthrough of limits in compressed sensing by the picture of phase transition
相变图像突破压缩感知的极限
- 批准号:
17K12749 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Phase Transitions and Scaling Limits in Lattice Models
晶格模型中的相变和尺度限制
- 批准号:
1608896 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Systemergonomics for cooperative interacting vehicles (2nd Phase):Transparency of automation behaviour and intervention possibilities of the human during normal operation, at system limits and during system failure
协作交互车辆的系统人体工程学(第二阶段):在正常操作、系统限制和系统故障期间自动化行为和人类干预可能性的透明度
- 批准号:
273371579 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Priority Programmes
Processes of coalescence and fragmentation: phase transitions, scaling limits and self-organised criticality
聚结和分裂过程:相变、尺度限制和自组织临界性
- 批准号:
EP/J019496/1 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Research Grant
Singular limits and multi-phase systems
奇异极限和多相系统
- 批准号:
185065-2004 - 财政年份:2012
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual
Singular limits and multi-phase systems
奇异极限和多相系统
- 批准号:
185065-2004 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual
SBIR Phase I: Compression-Based Analog-to-Digital Converters: Reaching New Low Power Limits in Quantization
SBIR 第一阶段:基于压缩的模数转换器:在量化方面达到新的低功耗限制
- 批准号:
1046544 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Probabilistic study toward scaling limits of the phase separation line and scaling exponents
相分离线和标度指数的标度极限的概率研究
- 批准号:
23540136 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sharp interface limits for diffuse interface models for two-phase flows of viscous incompressible fluids
粘性不可压缩流体两相流扩散界面模型的尖锐界面限制
- 批准号:
167000357 - 财政年份:2010
- 资助金额:
$ 33万 - 项目类别:
Priority Programmes
Singular limits and multi-phase systems
奇异极限和多相系统
- 批准号:
185065-2004 - 财政年份:2010
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual