Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
基本信息
- 批准号:6778988
- 负责人:
- 金额:$ 19.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-04-01 至 2009-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bacterial nitrogenases catalyze the reduction ("fixation") of N/2 to ammonia, an amazing
process that gives the precursor to all nitrogen-containing biomolecules. Because it is the ultimate multielectron reduction, discovery of the detailed mechanism of nitrogenase is a great challenge in biochemistry. N2 reduction occurs at a metal cluster called the FeMoco. After addition of electrons and protons, the FeMoco somehow binds, breaks, and protonates N2 to NH4*. Mutations near the FeMoco show that N2 and other substrates bind near the iron-rich center of the cluster. Based on literature crystallographic, spectroscopic, and mechanistic studies on nitrogenase, we have formulated a reasonable iron-based mechanism for reduction and N2 binding. This mechanism, based on low-coordinate iron, serves as our guiding hypothesis. Key intermediates have iron with only 3 or 4 attachments, and others with Fe-H bonds. However, the literature has few synthetic 3-coordinate iron compounds, and no Fe-H complexes with a coordination number of four or less.
This proposal describes the systematic study of synthetic low-coordinate iron compounds:
their properties, spectroscopic signatures, reactivity toward nitrogenase substrates, and
characteristic reaction patterns. Experiments are chosen to address several steps of the hypothetical mechanism, including reductive activation, N2 binding, N2 reactions and cleavage, and N-H bond formation. Because isolated Fe-H complexes completely break multiple bonds, they will be studied as reactivity models for nitrogenase intermediates. Multimetallic complexes with constrained geometry will show the arrangement most conducive to N2 cleavage. Mechanistic studies on key reactions will clarify allowed and forbidden reactions of iron atoms like those in the hypotheticaL FeMoco mechanism. These studies will elucidate the fundamentals of low-coordinate iron chemistry, which is necessary to understand the workings of the FeMoco and large synthetic clusters.
细菌固氮酶催化N/2还原(“固定”)为氨,这是一个令人惊讶的过程。
一种将前体转化为所有含氮生物分子的过程。由于固氮酶是多电子还原的终极过程,因此发现固氮酶的详细机制是生物化学中的一个重大挑战。N2还原发生在称为FeMoco的金属簇上。在添加电子和质子后,FeMoco以某种方式结合,断裂并将N2质子化为NH 4 *。FeMoco附近的突变表明,N2和其他底物结合在簇的富铁中心附近。基于文献晶体学,光谱学和固氮酶的机制研究,我们制定了一个合理的铁基还原和N2结合的机制。这种机制,基于低配位铁,作为我们的指导假设。关键的中间体含有只有3或4个连接的铁,其他的具有Fe-H键。然而,文献中很少有合成的3-配位铁化合物,也没有配位数为4或更少的Fe-H配合物。
该提案描述了合成低配位铁化合物的系统研究:
它们的性质、光谱特征、对固氮酶底物的反应性,以及
典型的反应模式选择实验来解决假设机制的几个步骤,包括还原活化,N2结合,N2反应和裂解,以及N-H键的形成。由于孤立的Fe-H复合物完全打破多重键,它们将被研究作为固氮酶中间体的反应模型。具有约束几何形状的多金属络合物将显示最有利于N2裂解的排列。对关键反应的机理研究将澄清铁原子的允许和禁止反应,如在假设的FeMoco机制。这些研究将阐明低配位铁化学的基本原理,这对于理解FeMoco和大型合成簇的工作是必要的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PATRICK L HOLLAND其他文献
PATRICK L HOLLAND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PATRICK L HOLLAND', 18)}}的其他基金
Mechanistically guided improvement in radical alkene coupling by base metal catalysts
贱金属催化剂对自由基烯烃偶联的机械引导改进
- 批准号:
9906258 - 财政年份:2019
- 资助金额:
$ 19.36万 - 项目类别:
Mechanistically guided improvement in radical alkene coupling by base metal catalysts
贱金属催化剂对自由基烯烃偶联的机械引导改进
- 批准号:
10371894 - 财政年份:2019
- 资助金额:
$ 19.36万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
7901205 - 财政年份:2009
- 资助金额:
$ 19.36万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
10218187 - 财政年份:2004
- 资助金额:
$ 19.36万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
8465238 - 财政年份:2004
- 资助金额:
$ 19.36万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
9751869 - 财政年份:2004
- 资助金额:
$ 19.36万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
9312826 - 财政年份:2004
- 资助金额:
$ 19.36万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
7390716 - 财政年份:2004
- 资助金额:
$ 19.36万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
7218021 - 财政年份:2004
- 资助金额:
$ 19.36万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
9892347 - 财政年份:2004
- 资助金额:
$ 19.36万 - 项目类别:
相似海外基金
A structural elucidation technique of unknown substances with mass spectrometry, quantum chemistry, and chemical kinetics and its application to unknown growth substrates for pathogenic bacteria
利用质谱、量子化学和化学动力学解析未知物质的结构及其在病原菌未知生长基质中的应用
- 批准号:
23H03559 - 财政年份:2023
- 资助金额:
$ 19.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Realizing Alternative Cements with Chemical Kinetics: Tuned Mechanical–Chemical Properties of Cementitious Magnesium Silicate Hydrates by Multi-Scale Synthetic Control
职业:利用化学动力学实现替代水泥:通过多尺度合成控制调整胶凝硅酸镁水合物的机械和化学性能
- 批准号:
2342381 - 财政年份:2023
- 资助金额:
$ 19.36万 - 项目类别:
Continuing Grant
Collaborative Research: Thermochemistry and Chemical Kinetics of Halide-driven Crystal Structure Control of Manganese and Lanthanide Chalcogenide Nanocrystals
合作研究:卤化物驱动的锰和镧系硫族化物纳米晶体晶体结构控制的热化学和化学动力学
- 批准号:
2305153 - 财政年份:2023
- 资助金额:
$ 19.36万 - 项目类别:
Standard Grant
Collaborative Research: Thermochemistry and Chemical Kinetics of Halide-driven crystal Structure Control of Manganese and Lanthanide Chalcogenide Nanocrystals
合作研究:卤化物驱动的锰和镧系硫族化物纳米晶体的晶体结构控制的热化学和化学动力学
- 批准号:
2305154 - 财政年份:2023
- 资助金额:
$ 19.36万 - 项目类别:
Standard Grant
Collaborative Research: Thermochemistry and Chemical Kinetics of Halide-driven Crystal Structure Control of Manganese and Lanthanide Chalcogenide Nanocrystals
合作研究:卤化物驱动的锰和镧系硫族化物纳米晶体晶体结构控制的热化学和化学动力学
- 批准号:
2305155 - 财政年份:2023
- 资助金额:
$ 19.36万 - 项目类别:
Standard Grant
Role of chemical kinetics on detonation stability and cell sizes
化学动力学对爆炸稳定性和泡孔尺寸的作用
- 批准号:
RGPIN-2020-04201 - 财政年份:2022
- 资助金额:
$ 19.36万 - 项目类别:
Discovery Grants Program - Individual
CAS:Mechanochemical Activation Carriers and Mechanisms by in Situ Chemical Kinetics Monitoring
CAS:原位化学动力学监测机械化学活化载体和机制
- 批准号:
2154893 - 财政年份:2022
- 资助金额:
$ 19.36万 - 项目类别:
Standard Grant
Taking On the "Curse of Dimensionality" in Chemical Kinetics: Complex Chemical Reaction Prediction Using Manifold Learning
应对化学动力学中的“维数诅咒”:利用流形学习预测复杂化学反应
- 批准号:
2227112 - 财政年份:2022
- 资助金额:
$ 19.36万 - 项目类别:
Standard Grant
CAREER: Realizing Alternative Cements with Chemical Kinetics: Tuned Mechanical–Chemical Properties of Cementitious Magnesium Silicate Hydrates by Multi-Scale Synthetic Control
职业:利用化学动力学实现替代水泥:通过多尺度合成控制调整胶凝硅酸镁水合物的机械和化学性能
- 批准号:
2143159 - 财政年份:2022
- 资助金额:
$ 19.36万 - 项目类别:
Continuing Grant
UNRAVELLING THE DYNAMICS AND CHEMICAL KINETICS OF NON-EQUILIBRIUM, MIXED-GAS HYDROGEN PLASMAS
揭示非平衡混合气体氢等离子体的动力学和化学动力学
- 批准号:
2609786 - 财政年份:2021
- 资助金额:
$ 19.36万 - 项目类别:
Studentship