Spatially patterned vascular cell co-cultures for combined electrical-optical monitoring of cell-cell communication
空间图案化血管细胞共培养,用于细胞间通讯的联合电光监测
基本信息
- 批准号:2344032
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
OverviewLocal communication between biological cells, through direct cell-cell interactions and paracrine signalling, is central to normal tissue physiology. Disruption of this communication plays a central role in numerous disease processes, including cardiovascular disease. This project will develop a completely new approach to dynamically monitoring vascular cell communication, by combining microfabrication techniques and surface functionalisation to create an impedance analysis microdevice with spatial cell patterning capability. This will provide novel mechanistic insights into cardiovascular disease that will open up opportunities for the development of improved treatments. BackgroundCardiovascular disease results from a complex remodelling of the blood vessel wall. Two key aspects of this process are initial endothelial cell (EC) dysfunction and subsequent phenotypic change and accumulation of smooth muscle cells (SMCs), with inherent disruption in local cell-cell communication. EC damage and SMC proliferation also underlie restenosis, which remains the Achilles heel of stent treatments. The processes driving these changes remain poorly understood, greatly hampering efforts to develop new treatments. Novel systems that mimic cardiovascular remodelling are therefore required both to tease apart the complex signalling mechanisms involved and for drug screening models.Dr Sandison and Dr McCormick's combined research experience leaves them well placed to address this need. Dr Sandison's recent publications have focussed on detailed investigations into phenotypic changes in SMCs, including developing methods for isolating, characterising and imaging vascular populations. Dr McCormick has developed a fully automated impedance spectroscopy system for monitoring cell responses in near real-time, showing that EC and SMC co-cultures give rise to distinct impedance spectra that are strongly influenced by cell-cell communication mechanisms. Together with Dr Sandison's broad experience in microsystems technology, this research base will ensure successful delivery of the project.Proposed ResearchA novel device incorporating transparent, thin-film, microfabricated electrodes, enabling simultaneously electrical-optical cell monitoring, will be developed. By correlating time-lapse imaging with impedance measurements, it will enable detailed characterisation of communication between cell populations, providing a series of validated impedance profiles for different co-culture environments. A combination of silane chemistry and electrochemical desorption will be employed to sequentially create adherent regions for patterning different cell types upon specific microelectrode regions. Significantly, modes of cellular communication will be teased apart by systematically modifying microelectrode geometries. To better mimic in vivo conditions, controlled shear stress will be applied by integration into a microfluidic system. Objectives:(1) Produce a new impedance analysis microdevice, developing protocols for sequential cellular patterning of multiple cell types.(2) Acquire control spectra for single vascular populations (e.g. ECs, SMCs) as they proliferate towards confluency.(3) Perform impedance analysis of spatially patterned co-cultures with both large (biochemical communication between cells only) and small (enabling physical communication via cellular processes) gaps between different populations.(4) Develop an integrated microfluidic system for analysis under continuous/pulsatile flow and for controlled drug delivery, examining the effect of drugs used in stent coatings.As well as producing a well-characterised in vitro model of vascular cell-cell communication, the resulting microsystem will be suitable for upscaling into an array format for multiplexed, label-free drug screening.
概述生物细胞之间通过直接的细胞间相互作用和旁分泌信号传导进行的局部通讯是正常组织生理学的核心。这种通讯的破坏在包括心血管疾病在内的许多疾病过程中发挥着核心作用。该项目将开发一种全新的方法来动态监测血管细胞通讯,通过结合微加工技术和表面功能化来创建具有空间细胞图案化能力的阻抗分析微型设备。这将为心血管疾病提供新的机制见解,为开发改进的治疗方法开辟机会。背景心血管疾病是由血管壁的复杂重塑引起的。该过程的两个关键方面是最初的内皮细胞(EC)功能障碍以及随后的表型变化和平滑肌细胞(SMC)的积累,以及局部细胞间通讯的固有破坏。 EC 损伤和 SMC 增殖也是再狭窄的基础,这仍然是支架治疗的致命弱点。推动这些变化的过程仍然知之甚少,这极大地阻碍了开发新疗法的努力。因此,需要模拟心血管重塑的新系统来梳理所涉及的复杂信号机制和药物筛选模型。桑迪森博士和麦考密克博士的综合研究经验使他们能够很好地满足这一需求。 Sandison 博士最近发表的出版物主要集中于对 SMC 表型变化的详细研究,包括开发血管群的分离、表征和成像方法。 McCormick 博士开发了一种全自动阻抗谱系统,用于近实时监测细胞反应,表明 EC 和 SMC 共培养会产生明显受细胞间通讯机制影响的不同阻抗谱。加上桑迪森博士在微系统技术方面的丰富经验,该研究基地将确保该项目的成功交付。拟议研究将开发一种采用透明薄膜微加工电极的新型设备,能够同时进行电光电池监测。通过将延时成像与阻抗测量相关联,它将能够详细表征细胞群之间的通信,为不同的共培养环境提供一系列经过验证的阻抗曲线。将采用硅烷化学和电化学解吸的组合来顺序创建粘附区域,以便在特定的微电极区域上图案化不同的细胞类型。重要的是,通过系统地修改微电极的几何形状,细胞通信的模式将被梳理清楚。为了更好地模拟体内条件,将通过集成到微流体系统中来施加受控剪切应力。目标:(1) 生产一种新的阻抗分析微装置,开发多种细胞类型的连续细胞图案化方案。(2) 在单个血管群(例如 EC、SMC)向汇合方向增殖时获取其控制光谱。(3) 对空间图案化共培养物进行阻抗分析,其中大间隙(仅细胞之间的生化通讯)和小间隙(通过细胞过程实现物理通讯) (4) 开发集成微流体系统,用于连续/脉动流下的分析和受控药物输送,检查支架涂层中使用的药物的效果。以及产生特征良好的血管细胞-细胞通讯的体外模型,所得的微系统将适合升级为阵列格式,用于多重、无标记药物筛选。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Micro-manufacturing of tissue patterned organ-chips for accelerated deployment of new medicines (Patterned OrganChips)
用于加速新药部署的组织图案化器官芯片的微制造(图案化器官芯片)
- 批准号:
EP/Z531261/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
EAGER: Direct Ink Writing of Molecularly Patterned Polyionic Actuators
EAGER:分子图案化聚离子致动器的直接墨水书写
- 批准号:
2232659 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Novel alkaline electrolyser with optimized micro-patterned electrodes for efficient ultra-low cost hydrogen
新型碱性电解槽具有优化的微图案电极,可实现高效、超低成本的氢气
- 批准号:
10075115 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Collaborative Research: RUI: Patterned Doping of Layered Materials
合作研究:RUI:层状材料的图案化掺杂
- 批准号:
2300639 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Heat Transport in Novel 3D Patterned Nanostructures
新型 3D 图案化纳米结构中的热传输
- 批准号:
EP/X012735/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Heat Transport in Novel 3D Patterned Structures
新型 3D 图案结构中的热传输
- 批准号:
EP/X012840/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: RUI: Patterned Doping of Layered Materials
合作研究:RUI:层状材料的图案化掺杂
- 批准号:
2300640 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Gel rupture under simple and dynamic loading: manipulation of failure mode via patterned heterogeneity in soft materials
合作研究:简单动态载荷下的凝胶破裂:通过软材料中的图案异质性操纵失效模式
- 批准号:
2311698 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Gel rupture under simple and dynamic loading: manipulation of failure mode via patterned heterogeneity in soft materials
合作研究:简单动态载荷下的凝胶破裂:通过软材料中的图案异质性操纵失效模式
- 批准号:
2311697 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of Complex Liver Organoids Using Cell-Specific Patterned Biomaterials
使用细胞特异性图案化生物材料开发复杂的肝脏类器官
- 批准号:
10654156 - 财政年份:2023
- 资助金额:
-- - 项目类别: