Understanding and Attributing Extreme Air Pollution Events in a Changing Climate
气候变化中极端空气污染事件的理解和归因
基本信息
- 批准号:2353903
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Poor air quality is a global health concern affecting all industrialised nations and all society. It is characterised by harmful levels of particulate matter, ozone and nitrogen oxides for which chronic and acute exposure to may increase morbidity. Worldwide, ~3 million deaths are attributable to air pollution annually. In the UK, tens of thousands of premature deaths occur annually and many locations breach air quality guidance thresholds. The objective of this PhD is to develop a series of statistical models based on measured air pollutant concentrations to: 1) characterise the frequency, duration and spatial extent of extreme air pollution events; 2) investigate meteorological drivers of extreme pollution events and; 2) assess how climate change may influence the occurrence of extremes. The project will be conducted in 3 phases. 1. Characterising UK extreme air quality episodesThe UK's AURN network consists of ~200 measurement sites and is used to determine the concentration and trends of air pollutants. Hourly AURN data are used to warn the public of adverse air quality and for compliance reporting against EU Air Quality Directives. A first step in this project will be to (a) gain familiarly with the AURN network, including pollutant (PM, O3, NO2) behaviour and observed trends at different site types (e.g. urban/rural/roadside), and (b) to write code to read/process the data. A comprehensive evaluation of extreme air pollution events will be performed, exploiting sites with long records (>20 years). Using Extreme Value Analysis, statistical models will be developed to estimate the likelihood of pollutants exceeding air quality guidance thresholds. Site-wise and regional variability in the magnitude and likelihood of extremes will be investigated.2. Meteorological drivers of extreme pollution episodesTo both accurately forecast extreme pollution events and quantify if and how the characteristics of these are changing, it is vital to understand the connection between the episodes themselves and any key meteorological drivers. We would also like to understand how the relationship between pollutants and their drivers differs between extreme and non-extreme scenarios. These questions will be addressed using extreme value covariate modelling methods, with models fitted initially on a site-wise basis. We will investigate parametric and semi-parametric covariate models for the driver-response relationship, trying where possible to construct models that can be used for short lead-time forecasting, by using lagged driver variables and/or directly modelling the serial extremal dependence in the responses. 3.Developing spatiotemporal models for UK air pollutionThere is uncertainty in the physical drivers of long-term trends or cycles in extreme air pollution events. To complement work in (2), we will use extreme value latent process models, in which site-specific parameters are modelled as functions in time and/or space using latent processes to produce data-driven visualisations of the behaviour of such processes. The advantages of this approach over the regression-based model are that (i) no knowledge of, and minimal prior assumptions on the stochastic behaviour of, the drivers is needed and (ii) they naturally extend to include temporal and/or spatial dependence structures. Inclusion of dependence is important both in improving scientific understanding of the physical processes (both pollutants and drivers) and in obtaining precise and efficient parameter and uncertainty estimates from the statistical model. There is a relatively large literature on use of latent process modelling for extreme events, primarily through implementation of a Bayesian Hierarchical modelling framework. Dynamic linear models, much less well explored in an extreme value context, may also be a useful framework for capturing temporal changes. This PhD's novelty will be in the application and development of these model types for UK air pollu
空气质量差是一个全球性的健康问题,影响到所有工业化国家和整个社会。其特征是颗粒物、臭氧和氮氧化物的有害水平,慢性和急性暴露于这些物质可能会增加发病率。全世界每年约有300万人死于空气污染。在英国,每年有数万人过早死亡,许多地方的空气质量超过了指导阈值。该博士的目标是根据测量的空气污染物浓度开发一系列统计模型:1)计算极端空气污染事件的频率,持续时间和空间范围; 2)调查极端污染事件的气象驱动因素; 2)评估气候变化如何影响极端事件的发生。该项目将分三个阶段进行。1.描述英国极端空气质量事件英国的AURN网络由约200个测量站点组成,用于确定空气污染物的浓度和趋势。每小时的AURN数据用于警告公众不良空气质量,并根据欧盟空气质量指令进行合规报告。该项目的第一步是(a)熟悉AURN网络,包括污染物(PM、O3、NO2)行为和在不同地点类型(例如城市/农村/路边)观察到的趋势,以及(B)编写代码以读取/处理数据。将对极端空气污染事件进行全面评估,利用有长期记录(>20年)的地点。利用极值分析,将开发统计模型,以估计污染物超过空气质量指导阈值的可能性。将调查极端事件的幅度和可能性的地点和区域差异。极端污染事件的气象驱动因素为了准确预测极端污染事件并量化这些事件的特征是否以及如何变化,了解事件本身与任何关键气象驱动因素之间的联系至关重要。我们还想了解污染物及其驱动因素之间的关系在极端和非极端情况下有何不同。这些问题将使用极值协变量建模方法来解决,模型最初是在站点的基础上拟合的。我们将研究参数和半参数协变量模型的驱动响应关系,尝试在可能的情况下,构建模型,可用于短提前期预测,通过使用滞后的驱动变量和/或直接建模的系列极值依赖的响应。3.开发英国空气污染的时空模型极端空气污染事件的长期趋势或周期的物理驱动因素存在不确定性。为了补充(2)中的工作,我们将使用极值潜在过程模型,其中使用潜在过程将特定于站点的参数建模为时间和/或空间中的函数,以产生此类过程行为的数据驱动可视化。与基于回归的模型相比,这种方法的优点在于:(i)不需要对驱动因素的随机行为进行了解和最小的先验假设,以及(ii)它们自然地扩展到包括时间和/或空间依赖结构。纳入相关性对于提高对物理过程(污染物和驱动因素)的科学认识以及从统计模型中获得精确和有效的参数和不确定性估计都很重要。有一个相对较大的文献使用潜在的过程建模的极端事件,主要是通过实施贝叶斯分层建模框架。动态线性模型,在极端值的情况下,还没有得到很好的探索,也可能是一个有用的框架,捕捉时间的变化。这个博士的新奇将在应用和发展这些模型类型的英国空气pollu
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Attributing the source of antimicrobial resistant diarrheal pathogens in African children
非洲儿童抗菌药物耐药性腹泻病原体的来源
- 批准号:
2749182 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Global monthly 1-km rice yield mapping for attributing the impacts from extreme weather events
全球每月 1 公里水稻产量图,用于归因极端天气事件的影响
- 批准号:
22H00577 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
SBP: Consequences of Attributing Discrimination to Implicit Bias
SBP:将歧视归因于隐性偏见的后果
- 批准号:
1941651 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Attributing forest changes to drivers in a complex landscape using long-term remote sensing data
使用长期遥感数据将森林变化归因于复杂景观中的驱动因素
- 批准号:
534916-2019 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Immune escape and exhaustion attributing to development of PTLD
PTLD 发展导致的免疫逃逸和耗竭
- 批准号:
19K17352 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Attributing forest changes to drivers in a complex landscape using long-term remote sensing data
使用长期遥感数据将森林变化归因于复杂景观中的驱动因素
- 批准号:
534916-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
CRII: OAC: Inferring, Attributing, Mitigating and Analyzing the Malicious Orchestration of Internet-scale Exploited IoT Devices: A Network Telescope Approach
CRII:OAC:推断、归因、减轻和分析互联网规模被利用物联网设备的恶意编排:网络望远镜方法
- 批准号:
1953050 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: OAC: Inferring, Attributing, Mitigating and Analyzing the Malicious Orchestration of Internet-scale Exploited IoT Devices: A Network Telescope Approach
CRII:OAC:推断、归因、减轻和分析互联网规模被利用物联网设备的恶意编排:网络望远镜方法
- 批准号:
1755179 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Mapping, attributing, and upscaling greenhouse gas exchange between complex land surfaces and the atmosphere
绘制、归因和升级复杂地表与大气之间的温室气体交换
- 批准号:
507854-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements
Mapping, attributing, and upscaling greenhouse gas exchange between complex land surfaces and the atmosphere
绘制、归因和升级复杂地表与大气之间的温室气体交换
- 批准号:
RGPIN-2017-03958 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




