Universal equilibria, phase-space structure of collisionless plasma systems, and turbulence in non-Maxwellian plasmas
通用平衡、无碰撞等离子体系统的相空间结构以及非麦克斯韦等离子体中的湍流
基本信息
- 批准号:2397188
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We know from statistical physics & kinetic theory that a plasma relaxes to a Maxwellian equilibrium on particle-collision timescales. However, in many natural plasmas, these timescales are long and relaxation to some collisionless equilibrium appears to occur. Are there (classes of) universal equilibria, independent of initial conditions, that a collisionless plasma will converge to? Do such plasmas have an effective collisionality, caused by collective field-particle interactions? These old questions have stayed open because of the difficulty of nonlinear theory and impossibility of kinetic simulations at sufficient resolution. The latter obstacle is being lifted as computers get more powerful, while the nonlinear theory of phase-space plasma turbulence, with which the problem of collisionless relaxation is intimately intertwined, has recently advanced in a new direction, viz., the concept of fluidisation of plasma turbulence due to stochastic echoes suppressing free-energy flow into short velocity-space scales. It is, therefore, a good time to undertake a new theory of collisionless relaxation. The project's key objective is to derive a "collisionless collision integral", i.e., a theory of relaxation of mean distribution functions in collisionless plasmas towards (classes of) universal equilibria. For that, it is necessary to work out the second-order, two-point phase-space correlation function of the fine-scale particle distribution. The latter objective is worthwhile in its own right, as a route to understanding the nature and structure of phase-space turbulence in plasmas that are not close to Maxwellian equilibrium: a seemingly simple but conceptually fascinating question is what is the counterpart to the turbulent energy cascade in such systems (in particular, what is the cascaded invariant). The project will be a mixture of analytical theory (kinetic theory of collisionless plasmas coupled with non-equilibrium statistical mechanics of turbulence) and numerical exploration (kinetic simulations). Both of the project's main objectives are of a fundamental nature, so the primary impact will be a fundamental understanding of collisionless, turbulent plasma as a non-equilibrium statistical-mechanical system. In applied terms, calculations of such things as turbulent transport of heat and momentum rely on just such an understanding and on developing a mathematical language in which this understanding is expressed; the outcomes of such calculations feed directly into, e.g., modelling plasma confinement in fusion devices. The project is being pursued within Oxford Plasma Theory Group, which is working across the full spectrum of such modelling, from fundamental theory to numerical simulation to experimentally driven validation & verification (the latter in close collaboration with CCFE); this research is also coupled to a multi-institutional effort involving York, Warwick and Strathclyde, funded by EPSRC Programme Grant TDoTP. The project is interdisciplinary and so falls within the ambit of several EPSRC research areas: Plasma and lasers: primary topical area; Nonlinear systems & Complexity science: the object of study is plasma turbulence, a fundamentally nonlinear phenomenon involving emergence of multi-scale complex distribution and flows of free energy; while the majority of work in this area has concerned fluid systems, the key novelty of this project is its focus on plasma turbulence in 6D (positions & velocities) phase space; Analytical science & Mathematical physics: the project involves development of new formalism for describing phase-space free-energy cascades in plasmas and plasma relaxation towards universal equilibria; UK Magnetic Fusion Research Programme: fusion plasmas, which are weakly collisional, are the most consequential example of a system where kinetic free-energy cascades emerge and control transport properties - and thus plasma confinement in fusion devices.
我们从统计物理学和动力学理论中知道,等离子体在粒子碰撞时间尺度上弛豫到麦克斯韦平衡。然而,在许多自然等离子体中,这些时间尺度很长,并且似乎会发生弛豫到某种无碰撞平衡。是否存在独立于初始条件的普适平衡点(类),使无碰撞等离子体收敛到?这样的等离子体是否具有由集体场-粒子相互作用引起的有效碰撞性?这些老问题一直悬而未决,因为非线性理论的困难和不可能的动力学模拟在足够的分辨率。后一个障碍随着计算机变得更强大而被解除,而与无碰撞弛豫问题密切相关的相空间等离子体湍流的非线性理论最近在一个新的方向上取得了进展,即,由于随机回波抑制自由能流进入短速度空间尺度的等离子体湍流的fludenation的概念。因此,现在是研究无碰撞弛豫新理论的好时机。该项目的主要目标是推导出“无碰撞碰撞积分”,即,无碰撞等离子体中平均分布函数向(类)普遍平衡的松弛理论。为此,有必要计算出细尺度粒子分布的二阶两点相空间关联函数。后一个目标本身是有价值的,作为理解不接近麦克斯韦平衡的等离子体中相空间湍流的性质和结构的途径:一个看似简单但概念上迷人的问题是,在这样的系统中,湍流能量级联的对应物是什么(特别是,级联不变量是什么)。该项目将是分析理论(无碰撞等离子体的动力学理论与湍流的非平衡统计力学相结合)和数值探索(动力学模拟)的混合物。该项目的两个主要目标都是基础性的,因此主要影响将是对作为非平衡物理力学系统的无碰撞湍流等离子体的基本理解。在应用方面,对热量和动量的湍流传输等事情的计算依赖于这样一种理解,并依赖于开发一种表达这种理解的数学语言;这种计算的结果直接输入,例如,模拟聚变装置中的等离子体约束。该项目正在牛津等离子体理论小组内进行,该小组正在研究这种建模的全方位,从基础理论到数值模拟,再到实验驱动的验证和验证(后者与CCFE密切合作);这项研究还与涉及约克,沃里克和斯特拉斯克莱德的多机构努力相结合,由EPSRC计划资助TDoTP资助。该项目是跨学科的,因此福尔斯属于几个EPSRC研究领域的范围:等离子体和激光:主要专题领域;非线性系统和复杂性科学:研究对象是等离子体湍流,一种涉及多尺度复杂分布和自由能流动的基本非线性现象;虽然在这个领域里的大部分工作都是关于流体系统的,但是这个项目的主要新奇在于它把重点放在了6D空间中的等离子体湍流上(位置和速度)相空间;分析科学和数学物理学:该项目涉及开发新的形式主义,用于描述等离子体中的相空间自由能级联和等离子体弛豫到普遍平衡;英国磁聚变研究计划:弱碰撞的聚变等离子体是动力学自由能级联出现并控制输运性质从而控制聚变装置中的等离子体约束的系统的最重要的例子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Impact of charge regulation on conformational and phase equilibria of intrinsically disordered proteins
电荷调节对本质无序蛋白质构象和相平衡的影响
- 批准号:
2227268 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Phase equilibria experiments to constrain magma storage at Mt Churchill, Alaska; refining the magmatic source of the White River Ash eruptions
阿拉斯加丘吉尔山限制岩浆储存的相平衡实验;
- 批准号:
2308646 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Investigating the Phase Equilibria of Branched Alcohol/Water/Salt Mixtures
研究支链醇/水/盐混合物的相平衡
- 批准号:
RGPIN-2022-03196 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Investigating the Phase Equilibria of Branched Alcohol/Water/Salt Mixtures
研究支链醇/水/盐混合物的相平衡
- 批准号:
DGECR-2022-00052 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
CAREER: Navigating Thermodynamic Landscapes for Phase Equilibria Predictions using Molecular Modeling and Machine Learning
职业:利用分子建模和机器学习在热力学景观中进行相平衡预测
- 批准号:
2143346 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Computer Assisted Experimental Phase Equilibria (CAEPE)
职业:计算机辅助实验相平衡 (CAEPE)
- 批准号:
2047084 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
In situ Determination of Phase Equilibria in the Quaternary Hafnia-Tantala-Titania-Tungstate System
第四纪铪-钽-二氧化钛-钨酸盐体系中相平衡的原位测定
- 批准号:
1838595 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Properties and Phase Equilibria for Product and Process Design (PPEPPD) International Conference, May 12-16, 2019, Vancouver, Canada 2019
产品和工艺设计的性能和相平衡 (PPEPPD) 国际会议,2019 年 5 月 12-16 日,加拿大温哥华,2019
- 批准号:
1928869 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




