Universal equilibria, phase-space structure of collisionless plasma systems, and turbulence in non-Maxwellian plasmas

通用平衡、无碰撞等离子体系统的相空间结构以及非麦克斯韦等离子体中的湍流

基本信息

  • 批准号:
    2397188
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

We know from statistical physics & kinetic theory that a plasma relaxes to a Maxwellian equilibrium on particle-collision timescales. However, in many natural plasmas, these timescales are long and relaxation to some collisionless equilibrium appears to occur. Are there (classes of) universal equilibria, independent of initial conditions, that a collisionless plasma will converge to? Do such plasmas have an effective collisionality, caused by collective field-particle interactions? These old questions have stayed open because of the difficulty of nonlinear theory and impossibility of kinetic simulations at sufficient resolution. The latter obstacle is being lifted as computers get more powerful, while the nonlinear theory of phase-space plasma turbulence, with which the problem of collisionless relaxation is intimately intertwined, has recently advanced in a new direction, viz., the concept of fluidisation of plasma turbulence due to stochastic echoes suppressing free-energy flow into short velocity-space scales. It is, therefore, a good time to undertake a new theory of collisionless relaxation. The project's key objective is to derive a "collisionless collision integral", i.e., a theory of relaxation of mean distribution functions in collisionless plasmas towards (classes of) universal equilibria. For that, it is necessary to work out the second-order, two-point phase-space correlation function of the fine-scale particle distribution. The latter objective is worthwhile in its own right, as a route to understanding the nature and structure of phase-space turbulence in plasmas that are not close to Maxwellian equilibrium: a seemingly simple but conceptually fascinating question is what is the counterpart to the turbulent energy cascade in such systems (in particular, what is the cascaded invariant). The project will be a mixture of analytical theory (kinetic theory of collisionless plasmas coupled with non-equilibrium statistical mechanics of turbulence) and numerical exploration (kinetic simulations). Both of the project's main objectives are of a fundamental nature, so the primary impact will be a fundamental understanding of collisionless, turbulent plasma as a non-equilibrium statistical-mechanical system. In applied terms, calculations of such things as turbulent transport of heat and momentum rely on just such an understanding and on developing a mathematical language in which this understanding is expressed; the outcomes of such calculations feed directly into, e.g., modelling plasma confinement in fusion devices. The project is being pursued within Oxford Plasma Theory Group, which is working across the full spectrum of such modelling, from fundamental theory to numerical simulation to experimentally driven validation & verification (the latter in close collaboration with CCFE); this research is also coupled to a multi-institutional effort involving York, Warwick and Strathclyde, funded by EPSRC Programme Grant TDoTP. The project is interdisciplinary and so falls within the ambit of several EPSRC research areas: Plasma and lasers: primary topical area; Nonlinear systems & Complexity science: the object of study is plasma turbulence, a fundamentally nonlinear phenomenon involving emergence of multi-scale complex distribution and flows of free energy; while the majority of work in this area has concerned fluid systems, the key novelty of this project is its focus on plasma turbulence in 6D (positions & velocities) phase space; Analytical science & Mathematical physics: the project involves development of new formalism for describing phase-space free-energy cascades in plasmas and plasma relaxation towards universal equilibria; UK Magnetic Fusion Research Programme: fusion plasmas, which are weakly collisional, are the most consequential example of a system where kinetic free-energy cascades emerge and control transport properties - and thus plasma confinement in fusion devices.
我们从统计物理和动力学理论中知道,等离子体在粒子碰撞时间尺度上弛豫到麦克斯韦平衡。然而,在许多天然等离子体中,这些时间尺度是很长的,并且似乎发生了到某种无碰撞平衡的松弛。是否存在与初始条件无关的(几类)无碰撞等离子体会收敛到的普适平衡?这样的等离子体是否具有由集体场-粒子相互作用引起的有效对撞性?由于非线性理论的困难和不可能以足够的分辨率进行动力学模拟,这些老问题一直悬而未决。随着计算机变得更加强大,后一种障碍正在被消除,而与无碰撞弛豫问题紧密交织在一起的相空间等离子体湍流的非线性理论最近朝着一个新的方向发展,即由于随机回波将自由能流抑制到短速度空间尺度而导致的等离子体湍流的流态化的概念。因此,现在是提出一种新的无碰撞弛豫理论的好时机。该项目的关键目标是推导出“无碰撞碰撞积分”,即无碰撞等离子体中平均分布函数向(类)宇宙平衡的松弛理论。为此,有必要求出细尺度粒子分布的二阶两点相空间关联函数。后一个目标本身是值得的,因为它是理解等离子体中相空间湍流的性质和结构的一条途径,而等离子体中的相空间湍流并不接近麦克斯韦平衡:一个看似简单但在概念上令人着迷的问题是,在这样的系统中,湍流能量级联的对应物是什么(特别是,级联不变量是什么)。该项目将是分析理论(无碰撞等离子体的动力学理论和湍流的非平衡统计力学)和数值探索(动力学模拟)的混合体。这两个项目的主要目标都是根本性的,所以主要的影响将是对无碰撞、湍流等离子体作为非平衡统计力学系统的基本理解。在应用方面,对热量和动量的湍流传输等的计算正是依赖于这种理解,并依赖于开发一种表达这种理解的数学语言;这种计算的结果直接输入到例如聚变装置中的等离子体约束的建模中。该项目正在牛津等离子体理论小组内进行,该小组正在进行从基础理论到数值模拟到实验驱动的验证和验证(后者与CCFE密切合作)的所有此类建模工作;这项研究还与由EPSRC计划赠款TDoTP资助的涉及约克、沃里克和斯特拉斯克莱德的多机构工作相结合。该项目是跨学科的,因此属于EPSRC的几个研究领域:等离子体和激光:主要主题领域;非线性系统和复杂性科学:研究对象是等离子体湍流,这是一种基本的非线性现象,涉及自由能的多尺度复杂分布和流动;虽然这一领域的大部分工作涉及流体系统,但该项目的主要新奇之处在于它关注6D(位置和速度)相空间的等离子体湍流;分析科学和数学物理:该项目涉及描述等离子体中相空间自由能级联和等离子体弛豫的新形式;英国磁聚变研究计划:聚变等离子体是弱碰撞的,是系统中最重要的例子,在该系统中,动能自由能级联出现并控制传输特性--从而控制聚变设备中的等离子体约束。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Impact of charge regulation on conformational and phase equilibria of intrinsically disordered proteins
电荷调节对本质无序蛋白质构象和相平衡的影响
  • 批准号:
    2227268
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Phase equilibria experiments to constrain magma storage at Mt Churchill, Alaska; refining the magmatic source of the White River Ash eruptions
阿拉斯加丘吉尔山限制岩浆储存的相平衡实验;
  • 批准号:
    2308646
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigating the Phase Equilibria of Branched Alcohol/Water/Salt Mixtures
研究支链醇/水/盐混合物的相平衡
  • 批准号:
    RGPIN-2022-03196
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Navigating Thermodynamic Landscapes for Phase Equilibria Predictions using Molecular Modeling and Machine Learning
职业:利用分子建模和机器学习在热力学景观中进行相平衡预测
  • 批准号:
    2143346
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Investigating the Phase Equilibria of Branched Alcohol/Water/Salt Mixtures
研究支链醇/水/盐混合物的相平衡
  • 批准号:
    DGECR-2022-00052
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
CAREER: Computer Assisted Experimental Phase Equilibria (CAEPE)
职业:计算机辅助实验相平衡 (CAEPE)
  • 批准号:
    2047084
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
In situ Determination of Phase Equilibria in the Quaternary Hafnia-Tantala-Titania-Tungstate System
第四纪铪-钽-二氧化钛-钨酸盐体系中相平衡的原位测定
  • 批准号:
    1838595
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Properties and Phase Equilibria for Product and Process Design (PPEPPD) International Conference, May 12-16, 2019, Vancouver, Canada 2019
产品和工艺设计的性能和相平衡 (PPEPPD) 国际会议,2019 年 5 月 12-16 日,加拿大温哥华,2019
  • 批准号:
    1928869
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Allosteric equilibria of thrombin and its precursors
凝血酶及其前体的变构平衡
  • 批准号:
    10429976
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Allosteric equilibria of thrombin and its precursors
凝血酶及其前体的变构平衡
  • 批准号:
    9789457
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了