Highly Automated Analysis of 4-D Cardiovascular MR Data
4-D 心血管 MR 数据的高度自动化分析
基本信息
- 批准号:6777495
- 负责人:
- 金额:$ 34.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:aortabioimaging /biomedical imagingclinical researchcomputer assisted medical decision makingcomputer data analysiscomputer program /softwarecomputer system design /evaluationconnective tissue disorderdisease /disorder modelheart imaging /visualization /scanningheart ventriclehuman subjectimage processingmagnetic resonance imagingmethod developmentmodel design /developmentmorphologypatient oriented researchtetralogy of Fallot
项目摘要
DESCRIPTION (provided by applicant):
Magnetic resonance (MR) imaging plays an increasingly important role in the diagnosis and management of congenital heart disease. Often, cardiovascular MR data are analyzed qualitatively. Enhanced computing power and quantitative image analysis should provide rapid, comprehensive and reproducible assessment of 4-dimensional MR data sets. Starting with development of a general-purpose cardiac image segmentation method, this proposal focuses on two groups of subjects - postoperative tetralogy of Fallot patients and patients with connective tissue disorders. These patients require accurate, serial assessment of right ventricular function and aortic dimensions, respectively. In this proposal, an image analysis methodology based on Active Appearance Models (AAM) will be applied to both tasks. During training, the AAM is built automatically from manually analyzed image examples. In the analysis stage, the AAM allows fully automated segmentation of image data using its learned knowledge of allowed shapes and appearances of objects of interest - the ventricles and the thoracic aorta. Hypotheses driving this proposal are that a) active appearance model-based segmentation can provide automated, reproducible assessment of cardiovascular MR images and increase the information content of these studies by analyzing data in four dimensions (3-D + time), eliminating operator variability and labor-intensive border tracing, and that b) complete 4-D data sets of ventricular and aortic surface morphology and motion will provide novel quantitative indices of disease status. We propose to: I) Develop and validate an active appearance model (AAM) based method for 3-D and 4-D (3-D + time) segmentation of the left and right ventricles and the thoracic aorta from volumetric MR images. 2) Use the 4-D AAM segmentation approach to develop and validate a patient-specific method for highly automated and reproducible serial analysis of the right and left ventricles and the thoracic aorta. 3) Develop a set of novel quantitative indices of ventricular and aortic morphology and function and validate the reproducibility of these measurements in postoperative tetralogy of Fallot patients and connective tissue disorder pa tients. The relationship between disease status, standard measures of ventricular function and aortic size, and novel quantitative indices will be assessed.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MILAN SONKA其他文献
MILAN SONKA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MILAN SONKA', 18)}}的其他基金
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
- 批准号:
8309340 - 财政年份:2006
- 资助金额:
$ 34.2万 - 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
- 批准号:
8759436 - 财政年份:2006
- 资助金额:
$ 34.2万 - 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
- 批准号:
7207994 - 财政年份:2006
- 资助金额:
$ 34.2万 - 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
- 批准号:
9110984 - 财政年份:2006
- 资助金额:
$ 34.2万 - 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
- 批准号:
7728398 - 财政年份:2006
- 资助金额:
$ 34.2万 - 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
- 批准号:
7089156 - 财政年份:2006
- 资助金额:
$ 34.2万 - 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
- 批准号:
7344794 - 财政年份:2006
- 资助金额:
$ 34.2万 - 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
- 批准号:
7918846 - 财政年份:2006
- 资助金额:
$ 34.2万 - 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
- 批准号:
8120451 - 财政年份:2006
- 资助金额:
$ 34.2万 - 项目类别:
Highly Automated Analysis of 4-D Cardiovascular MR Data
4-D 心血管 MR 数据的高度自动化分析
- 批准号:
6679940 - 财政年份:2003
- 资助金额:
$ 34.2万 - 项目类别: