Graph-Based Medical Image Segmentation in 3D and 4D

基于图的 3D 和 4D 医学图像分割

基本信息

  • 批准号:
    9110984
  • 负责人:
  • 金额:
    $ 41.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-04-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This is a competitive continuation of our Phase-II project. After successfully fulfilling all of its aims, our framework for optimal multi-surface andor multi-object n-D biomedical image segmentation was further extended, validated, and its practical utility demonstrated in clinical and translational image analysis tasks. This Phase-III proposal will develop several important extensions addressing identified limitations of the current framework and specifically focusing on applicability of the methodology to translational and routine healthcare tasks. Novel methods will be developed for simultaneous segmentation of mutually interacting regions and surfaces, automated design of cost functions from segmentation examples, and overcoming failures of automated techniques in routine diagnostic quality images by allowing limited and highly efficient expert input to guide the image segmentation processes. We hypothesize that advanced graph-based image segmentation algorithms merging machine- learning-derived segmentation parameters and image-specific expert guidance will significantly increase quantitative analysis performance in routinely acquired complex diagnostic-quality medical images across diverse application areas. We propose to: 1) Develop 3D, 4D, and generally n-D approaches for simultaneous segmentation of mutually interacting regions (objects) and surfaces. 2) Develop methods for data-driven automated design of cost functions used for surface-based, region-based, and surface-and-region-based graph search image segmentation. 3) Develop "Just-Enough-Interaction" (JEI) approaches for efficient "real-time" medical image segmentation, thus achieving robust clinical applicability of quantitative medical image analysis. 4) Assess performance of all developed methods in translational research settings; determine performance in quantitative medical image analysis and radiation oncology treatment planning workflow. As a result, our project will enable routine quantification and therefore personalized care.
描述(由申请人提供):这是我们的第二阶段项目的竞争延续。在成功实现了所有目标后,我们的多表面和/或多目标n-D生物医学图像分割的最佳框架得到了进一步的扩展,验证,并在临床和平移图像分析任务中证明了其实际效用。该第三阶段提案将开发几个重要的扩展,以解决当前框架的已识别限制,并特别关注该方法对转化和常规医疗保健任务的适用性。将开发新的方法,用于同时分割相互作用的区域和表面,从分割实例中自动设计成本函数,并通过允许有限和高效的专家输入来指导图像分割过程,从而克服常规诊断质量图像中自动化技术的失败。 我们假设,融合机器学习衍生的分割参数和图像特定专家指导的高级基于图形的图像分割算法将显著提高在不同应用领域中常规采集的复杂诊断质量医学图像的定量分析性能。我们建议:1)开发3D,4D和一般的n-D方法,用于同时分割相互作用的区域(对象)和表面。2)开发用于基于表面、基于区域以及基于表面和区域的图搜索图像分割的成本函数的数据驱动自动设计方法。3)开发“足够交互”(JEI)方法,用于有效的“实时”医学图像分割,从而实现定量医学图像分析的强大临床应用。4)评估转化研究环境中所有开发方法的性能;确定定量医学图像分析和放射肿瘤治疗计划工作流程的性能。因此,我们的项目将实现常规量化,从而实现个性化护理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MILAN SONKA其他文献

MILAN SONKA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MILAN SONKA', 18)}}的其他基金

Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
  • 批准号:
    8309340
  • 财政年份:
    2006
  • 资助金额:
    $ 41.29万
  • 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
  • 批准号:
    8759436
  • 财政年份:
    2006
  • 资助金额:
    $ 41.29万
  • 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
  • 批准号:
    7207994
  • 财政年份:
    2006
  • 资助金额:
    $ 41.29万
  • 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
  • 批准号:
    7728398
  • 财政年份:
    2006
  • 资助金额:
    $ 41.29万
  • 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
  • 批准号:
    7089156
  • 财政年份:
    2006
  • 资助金额:
    $ 41.29万
  • 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
  • 批准号:
    7344794
  • 财政年份:
    2006
  • 资助金额:
    $ 41.29万
  • 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
  • 批准号:
    8120451
  • 财政年份:
    2006
  • 资助金额:
    $ 41.29万
  • 项目类别:
Graph-Based Medical Image Segmentation in 3D and 4D
基于图的 3D 和 4D 医学图像分割
  • 批准号:
    7918846
  • 财政年份:
    2006
  • 资助金额:
    $ 41.29万
  • 项目类别:
Highly Automated Analysis of 4-D Cardiovascular MR Data
4-D 心血管 MR 数据的高度自动化分析
  • 批准号:
    6679940
  • 财政年份:
    2003
  • 资助金额:
    $ 41.29万
  • 项目类别:
Highly Automated Analysis of 4-D Cardiovascular MR Data
4-D 心血管 MR 数据的高度自动化分析
  • 批准号:
    6777495
  • 财政年份:
    2003
  • 资助金额:
    $ 41.29万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 41.29万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.29万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 41.29万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.29万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 41.29万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.29万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 41.29万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 41.29万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 41.29万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.29万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了