Holography of accelerating black holes
加速黑洞的全息术
基本信息
- 批准号:2426436
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project falls within EPSRC "mathematical physics" and "geometry and topology" research areas.A wide area of interest within high energy theoretical physics is concerned with the study of black holes. These objects constitute a particularly interesting field of work because the extreme gravitational regimes they give rise to can be exploited as a playground for studying some of the features of quantum gravity. Moreover, despite being rather simple objects, some of their fundamental aspects are little understood still today, particularly those relative to their thermodynamical behaviour (e.g. microscopic description, information paradox). One particular class of black holes that has received a remarkable attention lately is that of asymptotically AdS black holes. Though they do not have an explicit connection to reality as far as we know, they are interesting because they allow to be studied through a very powerful tool: the holographic principle. Following this idea, one can attempt to provide a microscopic description of the statistical degrees of freedom underlying the black hole thermodynamics in terms of the CFT living on the boundary of AdS which is dual to the black hole solution. This strategy has indeed been applied with success in a wide variety of cases, yet many others are still to be studied.The aim of the project is to construct new general classes of black holes in low dimensional supergravity and try to understand more systematically their microscopic description from the full string theory perspective.With this wide picture in mind, we will start by considering a family of black holes in four dimensions with asymptotic AdS_4 geometry and five different parameters: mass, electric and magnetic charges, angular momentum, and acceleration. Despite being known since long ago, this solution of the Einstein-Maxwell theory has not been studied much up to nowadays. The starting point of our project will be to correctly identify its boundary geometry and then reproduce the Bekenstein-Hawking entropy of such a black hole through a holographic computation.The main new ingredient we will add to the usual charged and rotating AdS_4 black holes studied in literature is the presence of a non-vanishing acceleration. Remarkably, this amounts to considering a metric which displays conical singularities and therefore identifies with a weighted projective space. Due to technical reasons related to the holographically dual field theory, we will focus on BPS black holes i.e. black holes that are both supersymmetric and extremal. These requirements impose constraints on the free parameters, reducing the number of independent ones from five down to two. On the other hand, at zero temperature the near horizon geometry is essentially an infinite throat and the quantum statistical relation that connects the entropy of the black hole with the renormalised on-shell action is not valid a priori. The standard procedure in these cases foresees a regularisation of the problem by means of analytical continuation of some of the parameters to the complex plane, followed by taking the BPS limit along a supersymmetric trajectory in the parameter space. Through this procedure it should be possible to recover a form of the quantum statistical relation which is valid also at zero temperature. Our strategy will be to apply this BPS limiting procedure and identify the boundary geometry, that is how the parameters entering the black hole solution influence the asymptotic geometry. With this result in our hand we will then consider an SCFT living on such a boundary and try to reproduce the Bekenstein-Hawking entropy of the black hole through an exact computation of the partition function. Lately, a lot of effort was put on the systematic study of supersymmetric theories on curved spaces, and our work will land precisely in this framework.
本计画福尔斯属于EPSRC的“数学物理”与“几何与拓扑学”研究领域。这些物体构成了一个特别有趣的工作领域,因为它们产生的极端引力机制可以被用作研究量子引力某些特征的游乐场。此外,尽管它们是相当简单的对象,但它们的一些基本方面今天仍然知之甚少,特别是那些与它们的物理行为有关的方面(例如微观描述,信息悖论)。最近受到极大关注的一类黑洞是渐近AdS黑洞。虽然据我们所知,它们与现实没有明确的联系,但它们很有趣,因为它们允许通过一个非常强大的工具进行研究:全息原理。根据这个想法,人们可以尝试提供一个微观描述的统计自由度的基础上的黑洞热力学的CFT生活在边界上的AdS,这是对偶的黑洞解决方案。这一策略已经成功地应用于各种各样的情况,但还有许多其他的情况仍有待研究。该项目的目的是构建新的低维超引力黑洞的一般类别,并试图从全弦理论的角度更系统地理解它们的微观描述。我们将首先考虑一个具有渐近AdS_4几何和五个不同参数的四维黑洞族:质量、电荷和磁荷、角动量和加速度。尽管爱因斯坦-麦克斯韦理论的这个解很早以前就被人们所知,但到目前为止还没有得到太多的研究。我们的工作的出发点是正确地确定它的边界几何,然后通过全息计算再现这种黑洞的Bekenstein-Hawking熵,我们将在文献中研究的通常带电和旋转的AdS_4黑洞中加入一个主要的新成分,即非零加速度的存在。值得注意的是,这相当于考虑一个显示圆锥奇点的度量,因此与加权射影空间相一致。由于与全息对偶场理论相关的技术原因,我们将专注于BPS黑洞,即超对称和极端的黑洞。这些要求对自由参数施加了约束,将独立参数的数量从五个减少到两个。另一方面,在零温度下,近视界几何本质上是一个无限的喉道,连接黑洞熵与重整化壳作用量的量子统计关系是先验无效的。在这些情况下的标准程序预见了一个正则化的问题,通过分析延续的一些参数的复平面,其次是采取BPS限制沿着一个超对称的轨迹在参数空间。通过这个过程,应该可以恢复一种在零温度下也有效的量子统计关系。我们的策略将是应用这个BPS限制程序,并确定边界几何,这是如何进入黑洞的解决方案的参数影响的渐近几何。有了这个结果,我们将考虑一个生活在这样一个边界上的SCFT,并试图通过精确计算配分函数来重现黑洞的贝肯斯坦-霍金熵。最近,人们在系统地研究弯曲空间上的超对称理论上投入了大量的精力,我们的工作将恰好落在这个框架中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
- 批准号:
2345734 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NSF Engines Development Award: Accelerating A Just Energy Transition Through Innovative Nature-Inclusive Offshore Wind Farms (CT,DE,MA,MD,NJ,RI,VA)
NSF 发动机开发奖:通过创新的自然包容性海上风电场加速公正的能源转型(康涅狄格州、特拉华州、马里兰州、马里兰州、新泽西州、罗德岛州、弗吉尼亚州)
- 批准号:
2315558 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Cooperative Agreement
FMO/ML-Guided Drug Design: Accelerating Novel Inhibitor Development and Drug Discovery
FMO/ML 引导的药物设计:加速新型抑制剂的开发和药物发现
- 批准号:
24K20888 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Rapidly accElerating Mof-Based soRbents as A Novel Decarbonisation Technology (REMBRANDT)
快速加速 Mof 基吸附剂作为新型脱碳技术 (REMBRANDT)
- 批准号:
10111050 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
ART: Accelerating Research Translation in Southern Mississippi from Concepts to Careers
艺术:加速密西西比州南部从概念到职业的研究转化
- 批准号:
2331378 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Decay accelerating factor (CD55) protects against lectin pathway-mediated AT2 cell dysfunction in cigarette smoke-induced emphysema
衰变加速因子 (CD55) 可防止香烟烟雾引起的肺气肿中凝集素途径介导的 AT2 细胞功能障碍
- 批准号:
10990669 - 财政年份:2024
- 资助金额:
-- - 项目类别:
OpenBioMAPS: shared tools for accelerating UK bio-manufacturing
OpenBioMAPS:加速英国生物制造的共享工具
- 批准号:
BB/Y007808/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CC* INTEGRATION-SMALL: ADIABATIC MICROSERVICE LEVEL LOAD BALANCED FORWARDING ON PISA SWITCH FOR ACCELERATING URGENT PROCESSES IN SCIENCE DATA CENTER NETWORKS
CC* 集成小型:PISA 交换机上的绝热微服务级负载平衡转发,用于加速科学数据中心网络中的紧急进程
- 批准号:
2346729 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: HayaRupu: Accelerating Natural Hazard Engineering with AI-Driven Discovery Loops
职业:HayaRupu:利用人工智能驱动的发现循环加速自然灾害工程
- 批准号:
2339678 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant