Applied Category Theory for Compilation of Quantum Algorithms

量子算法编译的应用范畴论

基本信息

  • 批准号:
    2426721
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Several algorithms for quantum computing can be expected to asymptotically outperform their classical counterparts for important applications in areas such as cryptography and quantum chemistry. However, despite significant recent advancements, the resources required to perform these algorithms at useful problem sizes are typically orders of magnitude above the available current hardware. Therefore, the problem of running these algorithms must be tackled from two different directions: the improvement of hardware to match the required specifications, and improved compilation of algorithms to reduce the resource requirements.I propose the use of categorical quantum mechanics, and category theory in general, to reason about compilation of algorithms, and to develop theoretical and practical tools to allow asymptotically advantageous quantum algorithms to run on real devices sooner and with fewer resources. This has large potential impact, as obtaining real-life quantum advantage would be potentially revolutionary for several problem domains. This approach has recently seen success using graphical calculi such as the ZX-calculus for reduction of T-and CNOT-counts in quantum circuits, original qubit-mapping methods, space-time compression of fault-tolerant programs and development of new quantum error correction codes, but many candidate topics remain unexplored.There are two broad regimes of quantum computing, and corresponding quantum algorithms: (a) near-term so-called noisy intermediate scale quantum (NISQ) devices, for which hardware errors are the primary limiting factors, and (b) the long-term goal of fault-tolerant devices, which leverage error correcting codes using large numbers of qubits or exotic quasiparticles to overcome hardware errors.NISQ devices have few qubits, which tend to suffer from poor connectivity, low coherence times and poor gate fidelities, particularly for entangling gates. As a result, NISQ algorithms are variational, running a shallow quantum circuit as a subroutine within a larger classical loop to optimise a cost function. While there have been some improvements made to NISQ compilation using categorical quantum mechanics, NISQ algorithms tend to be homogeneous and primitive, and the circuit model appears mostly sufficient.By contrast, native operations on planned fault-tolerant devices, such as defect braiding and lattice surgery, are well-represented using categorical quantum mechanics, and the relevant computational models differ substantially from NISQ circuits. The most expensive resources are non-Clifford states, and running a full fault-tolerant algorithm could be expected to take several days for relevant problem sizes, even given millions of physical qubits. This is a key area for the development of compilation tools. Existing categorical models describe computation using exotic quasiparticles, and these should be refined and extended for general fault-tolerant computation.The research on this topic aligns with modern applied category theory, leveraging monoidal categories and diagrammatic reasoning to describe complex systems. This project falls within the EPSRC Quantum Technologies research area.
在密码学和量子化学等领域的重要应用中,几种量子计算算法有望以渐进的方式超越经典算法。然而,尽管最近取得了重大进展,但在有用的问题大小下执行这些算法所需的资源通常比现有的可用硬件高出几个数量级。因此,运行这些算法的问题必须从两个不同的方向来解决:改进硬件以匹配所需的规范,以及改进算法编译以减少资源需求。我建议使用范畴量子力学和一般范畴理论来推理算法编译,并开发理论和实用工具,以允许渐近优势量子算法更快地以更少的资源在真实设备上运行。这具有巨大的潜在影响,因为获得现实生活中的量子优势可能会对几个问题领域产生革命性的影响。这种方法最近成功地使用了图形演算,例如用于减少量子电路中的T计数和CNOT计数的ZX演算、原始的量子比特映射方法、容错程序的时空压缩以及新的量子纠错码的开发,但许多候选主题仍未被开发。量子计算有两个广泛的区域以及相应的量子算法:(A)近期所谓的噪声中尺度量子(NISQ)设备,对于该设备,硬件错误是主要的限制因素;以及(B)容错设备的长期目标,NISQ设备使用大量的量子比特或奇异的准粒子来利用纠错码来克服硬件错误。NISQ设备的量子比特很少,往往存在连通性差、相干时间低和栅保真度差的问题,特别是对于纠缠门。因此,NISQ算法是可变的,将浅量子电路作为更大的经典循环中的子例程来运行,以优化成本函数。虽然使用范畴量子力学对NISQ编译进行了一些改进,但NISQ算法趋于同构和原始,电路模型似乎基本足够。相比之下,利用范畴量子力学很好地表示了计划中的容错设备上的自然操作,如缺陷编织和格子操作,相关计算模型与NISQ电路有很大不同。最昂贵的资源是非Clifford态,即使给出数百万个物理量子比特,运行一个完整的容错算法也可能需要几天的时间来处理相关问题的大小。这是开发编译工具的一个关键领域。现有的范畴模型使用奇异的准粒子来描述计算,这些模型需要改进和扩展以用于一般的容错计算,这一主题的研究与现代应用范畴理论相一致,利用单态范畴和图解推理来描述复杂系统。该项目属于EPSRC量子技术研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

ACT of intelligence: Applied Category Theory for higher cognitive development
智力 ACT:更高认知发展的应用范畴论
  • 批准号:
    23K11797
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on induced twisted representations in conformal field theory with tensor category theory
张量范畴论共形场论中诱导扭曲表示的研究
  • 批准号:
    23KJ0540
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Stability in Model Theory and Category Theory
模型论和范畴论的稳定性
  • 批准号:
    EP/X018997/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Representation Theory of diagrammatic Hecke category
图解Hecke范畴的表示论
  • 批准号:
    2884599
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Conference: The Adjoint School: A Training Program for New Researchers in Applied Category Theory
会议:附属学校:应用范畴理论新研究人员培训计划
  • 批准号:
    2216871
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Topics in enriched category theory
丰富范畴论的主题
  • 批准号:
    2745681
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Homotopical Macrocosms for Higher Category Theory
高范畴理论的同伦宏观宇宙
  • 批准号:
    2204304
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Model Comparisons and Foundational Developments in Higher Category Theory
高范畴理论的模型比较和基础发展
  • 批准号:
    2203915
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
  • 批准号:
    RGPIN-2017-03854
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Category Theory, Artificial Intelligence and Interdisciplinary Quantum Structures
范畴论、人工智能和跨学科量子结构
  • 批准号:
    2596010
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了