Category Theory, Artificial Intelligence and Interdisciplinary Quantum Structures
范畴论、人工智能和跨学科量子结构
基本信息
- 批准号:2596010
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Originally a branch of Pure Mathematics, Category Theory is attracting increasing attention for practical uses. Application areas are broad, including, but not limited to: Programming Language Design, Database Management, Fundamental Physics, Quantum Computing, Artificial Intelligence, Linguistics and intersections thereof. Category Theory is an expressive yet rigorous language, able to describe each of these phenomena in isolation, but also ideal for drawing connections between them by design. This owes to its historical use for relating seemingly disparate branches of Mathematics, which has since evolved into more interdisciplinary uses across fields such as Physics and Computer Science.An area this project potentially impacts is Quantum Computing. Recent research on Category Theory-based diagrammatic languages has been used to drastically reduce the size of Quantum Circuits. Further research in this direction may help produce more efficient Quantum Computers, accelerating the development of Quantum Computation at scale.Another potential impact is on Artificial Intelligence. Currently, mainstream Artificial Intelligence largely consists of 'black box' implementations: decision making procedures are frequently heuristics-based and often lack understanding and interpretability. Suitable for formalising abstract processes, Category Theory may allow for better understood Artificial Intelligence.Furthermore, at the intersection of Artificial Intelligence and Quantum Computing, recent developments have shown that by describing both language and Quantum circuits in terms of Category Theory, some Natural Language Processing tasks easily translate to Quantum circuits. This bodes well for future applications of Quantum Computers to a wider variety of Artificial Intelligence tasks.Aims and objectives include:Explore the applications of diagrammatic languages to Quantum Computation such as Quantum circuit optimization, Quantum software and Quantum algorithms.Devise expressive, yet formal Category-theoretic descriptions of both Classical and Quantum Artificial Intelligence algorithms that make them more amenable to human understanding.Devise Category Theory based methods for utilizing Quantum Computation in Artificial Intelligence applications.Further develop Mathematical formalisms to uncover connections between Mathematics, Computation, Fundamental Physics and Cognition.Ways in which this research is novel:Much of the current work concerning diagrammatic languages for Quantum circuits utilises a specific language called the ZX-Calculus. Despite this, other variations exist, such as 'ZW' and 'ZH'. Different languages may be more suitable for different applications. As such, this project is not limited in scope to ZX, but also seeks to explore novel use and development of other diagrammatic languages.Much Artificial Intelligence research is results-focused but lacks interpretability and understanding of the intelligent systems producing these results. This project takes an alternative approach, prioritizing a deeper understanding of why these systems work, why they perform as well as they do, and to seek a human-interpretable rationale behind the decisions and predictions they make.Quantum Artificial Intelligence is still limited to a narrow range of Machine Learning and Natural Language Processing applications. On the other hand, there is a wealth of sub-fields of Artificial Intelligence that have yet to be explored in the Quantum realm, such as Computer Vision and Reinforcement Learning. This project aims to extend the current scope of Quantum Artificial Intelligence tasks beyond its current limits, uncovering novel use cases.This project is interdisciplinary, addressing aspects of the EPSRC Mathematical Sciences research theme, the Artificial Intelligence Technologies research area, and the Quantum Technologies theme.
范畴理论最初是纯数学的一个分支,但它的实际用途越来越受到人们的关注。应用领域广泛,包括但不限于:编程语言设计、数据库管理、基础物理、量子计算、人工智能、语言学及其交叉学科。范畴理论是一种富有表现力而又严谨的语言,能够孤立地描述这些现象中的每一种,但也是通过设计在它们之间建立联系的理想选择。这要归功于它在历史上用来将看似不同的数学分支联系在一起,自那以后,它已经演变成更多跨领域的跨学科应用,如物理学和计算机科学。这个项目潜在影响的一个领域是量子计算。最近基于范畴理论的图形语言的研究已经被用来显著地减小量子电路的尺寸。这方面的进一步研究可能有助于生产更高效的量子计算机,加速量子计算的规模化发展。另一个潜在的影响是人工智能。目前,主流的人工智能很大程度上由黑盒实现组成:决策过程往往是基于启发式的,往往缺乏理解和解释。范畴理论适用于抽象过程的形式化,可以更好地理解人工智能。此外,在人工智能和量子计算的交叉点上,最近的发展表明,通过用范畴理论来描述语言和量子电路,一些自然语言处理任务很容易转化为量子电路。这预示着量子计算机在未来更广泛的人工智能任务中的应用。目标和目标包括:探索图形语言在量子计算中的应用,如量子电路优化、量子软件和量子算法。对经典和量子人工智能算法进行富有表现力的、但形式上的范畴理论描述,使其更易于人类理解。基于范式论的方法在人工智能应用中利用量子计算。进一步发展数学形式化来揭示数学、计算、基础物理和认知之间的联系。这项研究的方式是新颖的:目前关于量子电路图形语言的许多工作都使用一种特定的语言,称为ZX-演算。尽管如此,还有其他的变体,如‘ZW’和‘ZH’。不同的语言可能更适合不同的应用。因此,这个项目的范围不仅限于ZX,还寻求探索其他图解语言的新用途和开发。许多人工智能研究注重结果,但缺乏对产生这些结果的智能系统的可解释性和理解。这个项目采取了另一种方法,优先更深入地了解这些系统为什么工作,为什么它们表现得这么好,并在它们做出的决定和预测背后寻找人类可解释的理由。量子人工智能仍然局限于机器学习和自然语言处理应用的狭窄范围。另一方面,人工智能还有大量的子领域尚未在量子领域进行探索,如计算机视觉和强化学习。该项目旨在扩展当前量子人工智能任务的范围,超越其当前的限制,发现新的用例。该项目是跨学科的,涉及EPSRC数学科学研究主题、人工智能技术研究领域和量子技术主题的各个方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Artificial Intelligence and Network Theory for Elections
SBIR 第一阶段:选举的人工智能和网络理论
- 批准号:
2309896 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Artificial Intelligence, Market Concentration, Growth, and Distribution: Theory and Empirics
人工智能、市场集中度、增长和分布:理论和经验
- 批准号:
23K01355 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
STEM-AI: Scientific Theory Encoding Methods for Artificial Intelligence
STEM-AI:人工智能的科学理论编码方法
- 批准号:
567554-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Artificial Intelligence Improvement of Rate Theory Models
人工智能改进速率理论模型
- 批准号:
571693-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
A Theory of Learned Representations in Artificial and Natural Neural Networks
人工和自然神经网络中的学习表示理论
- 批准号:
2134157 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
I-Corps: Automatic Music Generation Using Artificial Intelligence and Music Theory
I-Corps:使用人工智能和音乐理论自动生成音乐
- 批准号:
1916649 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
On Automatic berthing/docking by combining optimal control theory and artificial intelligence technology
最优控制理论与人工智能技术相结合的自动靠泊/对接研究
- 批准号:
19K04858 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluating and enhancing the robustness of artificial systems based on complex network theory
基于复杂网络理论评估和增强人工系统的鲁棒性
- 批准号:
18KT0059 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)