Algorithmic Triangulation of Monotone families

单调族的算法三角剖分

基本信息

  • 批准号:
    2427789
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

The proposed research is in the field of computer algebra, one of the main areas of research within the Mathematical foundations group in the Department of Computer Science.It is centred around the idea that semi algebraic sets become easier to work with once they have been broken down into sufficiently simple pieces.One such method is Cylindrical Algebraic Decomposition (CAD), which breaks a semi algebraic set into cylindrical cells. This method is well studied, and it is possible to construct a CAD of any semi algebraic set. However sometimes CADs can arise which have undesirable properties. For example, not all cells in the CAD have the property of being topologically regular cells. Basu, Gabrielov and Vorobjov proved that for a semi algebraic set $K \subset R^n$ with $\dim(K) \le 2$ it is always possible to construct a CAD with all topologically regular cells. The first objective of this project is to design and implement an efficient algorithm to construct these regular CADs. The ability to efficiently construct regular CADs is an important problem in it's own right, but it is also a dependency for the second aim of my research.The University of Bath is also involved in an EPSRC project entitled "Pushing Back the Doubly-Exponential Wall of Cylindrical Algebraic Decomposition". The first part of my research, designing an efficient algorithm for creating regular CADs fits in nicely with this project.Another method of breaking up semi algebraic sets is triangulation. As with CAD, there are classical results that state that any semi algebraic set can be triangulated. However, in a number of topological problems, approximations of sets by monotone families are useful. When blow-ups occur, the behaviour of these families can be complex, and it can help to try to classify them into a finite number of standard types. Basu, Gabrielov and Vorobjov also proved that a triangulation of a 2-dimensional monotone family into a simplicial complex can be constructed such that each of the 2-simplices will have one of five types. The next objective of my research is to take this result and use it to design an algorithm for constructing triangulations which satisfy the above condition. The construction of a regular CAD will be an intermediate step in this process.If time allows, there is also a possibility of extending the above algorithms to sets with dimension <= 3, and possibly even generalising to n-dimensional sets.A tangible objective of this research is to consider the possibility of including these new algorithms in computer algebra systems, such as Maple. This will enable them to be used by other researchers in wider applications. For example, the CAD algorithm can be used to perform quantifier elimination. This has a broad array of applications, ranging from verification of safety-critical software systems to emerging applications in biology and economics.
拟议的研究是在计算机代数领域,这是计算机科学系数学基础小组的主要研究领域之一。它的核心思想是,一旦半代数集被分解成足够简单的片段,它们就会变得更容易处理。柱面代数分解(CAD)就是这样的方法之一,它将半代数集分解成柱面单元。这种方法得到了很好的研究,可以构造任意半代数集的计算机辅助设计。然而,有时会出现具有不良特性的CAD。例如,并非CAD中的所有单元格都具有拓扑规则单元格的属性。Basu,Gabrielov和Vorobjov证明了对于一个具有$-dim(K)-2$的半代数集$K-子集R^n-$,总是可以构造出一个具有所有拓扑正则胞元的CAD。这个项目的第一个目标是设计和实现一个有效的算法来构造这些规则的CAD。高效地构造规则CAD的能力本身就是一个重要的问题,但它也是我研究的第二个目标的依赖。巴斯大学还参与了EPSRC的一个项目,名为《推回柱面代数分解的双指数墙》。研究的第一部分,设计了一种高效的生成规则CAD的算法,很好地符合这个项目。另一种分解半代数集的方法是三角剖分。与CAD一样,有一些经典的结果表明,任何半代数集都可以三角剖分。然而,在许多拓扑问题中,单调族对集合的逼近是有用的。当崩盘发生时,这些家庭的行为可能会很复杂,尝试将它们归类为有限数量的标准类型可能会有所帮助。Basu,Gabrielov和Vorobjov还证明了可以构造一个从二维单调族到单纯复形的三角剖分,使得每个2-单调复形都有五种类型之一。我的下一个研究目标是利用这一结果并利用它来设计一个构造满足上述条件的三角剖分的算法。规则CAD的构建将是这一过程的中间步骤。如果时间允许,也有可能将上述算法扩展到维度为3的集合,甚至可能推广到n维集合。这项研究的一个具体目标是考虑将这些新算法包括在计算机代数系统中的可能性,如Maple。这将使它们能够被其他研究人员在更广泛的应用中使用。例如,可以使用CAD算法来执行量词消除。这具有广泛的应用范围,从安全关键软件系统的验证到生物学和经济学中的新兴应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Documenting the Essential Conditions for Implementing Urban Trails in Canada: A Novel Triangulation Approach
记录在加拿大实施城市步道的基本条件:一种新颖的三角测量方法
  • 批准号:
    479129
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Extending the Triangulation Within a Study (TWIST) framework to improve real-world evaluation of genetically driven medication response
扩展研究内三角测量 (TWIST) 框架,以改善对遗传驱动药物反应的现实评估
  • 批准号:
    MR/X011372/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Triangulation of values using different valuation methods - CAVEAT
使用不同估值方法进行价值三角测量 - 警告
  • 批准号:
    AH/Y000528/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
A cognitive triangulation of environmental ethics through Japanese and Latin American philosophies
通过日本和拉丁美洲哲学对环境伦理的认知三角测量
  • 批准号:
    23K00003
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimizing care for older adults in the new treatment era for type 2 diabetes and heart failure: Strengthening causal inference through novel approaches and evidence triangulation
在 2 型糖尿病和心力衰竭的新治疗时代优化老年人护理:通过新方法和证据三角测量加强因果推理
  • 批准号:
    10449576
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Optimizing care for older adults in the new treatment era for type 2 diabetes and heart failure: Strengthening causal inference through novel approaches and evidence triangulation
在 2 型糖尿病和心力衰竭的新治疗时代优化老年人护理:通过新方法和证据三角测量加强因果推理
  • 批准号:
    10673040
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
SBIR Phase I: Novel Triangulation Gauge
SBIR 第一阶段:新型三角测量仪
  • 批准号:
    2053336
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Homologie de Floer et triangulation de variétés
Floer 的同源性和变量的三角测量
  • 批准号:
    543015-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
The effect of search engine optimization on the search results of web search engines: model development, empirical testing and triangulation with user and expert assessments(SEO effect)
搜索引擎优化对网络搜索引擎搜索结果的影响:模型开发、实证测试以及用户和专家评估的三角测量(SEO 效果)
  • 批准号:
    417552432
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Strict geometric modelling concepts for underwater laser triangulation
水下激光三角测量的严格几何建模概念
  • 批准号:
    433522300
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了